Neural/Deep Networks

Whether to construct predictive models of user behavior or player affect, to find mappings between game elements and their aesthetics, or to figure out the goals of a human co-creator, machine learning based on neural networks is a powerful tool for realizing artificial intelligence.

Dungeons & Replicants: Automated Game Balancing via Deep Player Behavior Modeling

Johannes Pfau, Antonios Liapis, Georg Volkmar, Georgios N. Yannakakis and Rainer Malaka

Abstract: Balancing the options available to players in a way that ensures rich variety and viability is a vital factor for the success of any video game, and particularly competitive multiplayer games. Traditionally, this balancing act requires extensive periods of expert analysis, play testing and debates. While automated gameplay is able to predict outcomes of parameter changes, current approaches mainly rely on heuristic or optimal strategies to generate agent behavior. In this paper, we demonstrate the use of deep player behavior models to represent a player population (n = 213) of the massively multiplayer online role-playing game Aion, which are used, in turn, to generate individual agent behaviors. Results demonstrate significant balance differences in opposing enemy encounters and show how these can be regulated. Moreover, the analytic methods proposed are applied to identify the balance relationships between classes when fighting against each other, reflecting the original developers' design.

in Proceedings of the IEEE Conference on Games, 2020. BibTex

Modelling the Quality of Visual Creations in Iconoscope

Antonios Liapis, Daniele Gravina, Emil Kastbjerg and Georgios N. Yannakakis

Abstract: This paper presents the current state of the online game Iconoscope and analyzes the data collected from almost 45 months of continuous operation. Iconoscope is a freeform creation game which aims to foster the creativity of its users through diagrammatic lateral thinking, as users are required to depict abstract concepts as icons which may be misinterpreted by other users as different abstract concepts. From users' responses collected from an online gallery of all icons drawn with Iconoscope, we collect a corpus of over 500 icons which contain annotations of visual appeal. Several machine learning algorithms are tested for their ability to predict the appeal of an icon from its visual appearance and other properties. Findings show the impact of the representation on the model's accuracy and highlight how such a predictive model of quality can be applied to evaluate new icons (human-authored or generated).

in Proceedings of the 8th International Games and Learning Alliance Conference. Springer, 2019. BibTex

Using Dates as Contextual Information for Personalized Cultural Heritage Experiences

Ahmed Dahroug, Andreas Vlachidis, Antonios Liapis, Antonis Bikakis, Martin Lopez-Nores, Owen Sacco and Jose Juan Pazos-Arias

Abstract: We present semantics-based mechanisms that aim to promote reflection on cultural heritage by means of dates (historical events or annual commemorations), owing to their connections to a collection of items and to the visitors' interests. We argue that links to specific dates can trigger curiosity, increase retention and guide visitors around the venue following new appealing narratives in subsequent visits. The proposal has been evaluated in a pilot study on the collection of the Archaeological Museum of Tripoli (Greece), for which a team of humanities experts wrote a set of diverse narratives about the exhibits. A year-round calendar was crafted so that certain narratives would be more or less relevant on any given day. Expanding on this calendar, personalised recommendations can be made by sorting out those relevant narratives according to personal events and interests recorded in the profiles of the target users. Evaluation of the associations by experts and potential museum visitors shows that the proposed approach can discover meaningful connections, while many others that are more incidental can still contribute to the intended cognitive phenomena.

in SAGE Journal of Information Science, 2019 (accepted). BibTex

A Multi-Faceted Surrogate Model for Search-based Procedural Content Generation

Daniel Karavolos, Antonios Liapis and Georgios N. Yannakakis

Abstract: This paper proposes a framework for the procedural generation of level and ruleset components of games via a surrogate model that assesses their quality and complementarity. The surrogate model combines level and ruleset elements as input and gameplay outcomes as output, thus constructing a mapping between three different facets of games. Using this model as a surrogate for expensive gameplay simulations, a search-based generator can adapt content towards a target gameplay outcome. Using a shooter game as the target domain, this paper explores how parameters of the players' character classes can be mapped to both the level's representation and the gameplay outcomes of balance and match duration. The surrogate model is built on a deep learning architecture, trained on a large corpus of randomly generated sets of levels, classes and simulations from gameplaying agents. Results show that a search-based generative approach can adapt character classes, levels, or both towards designer-specified targets. The model can thus act as a design assistant or be integrated in a mixed-initiative tool. Most importantly, the combination of three game facets into the model allows it to identify the synergies between levels, rules and gameplay and orchestrate the generation of the former two towards desired outcomes.

in Transactions on Games, 2019 (accepted). BibTex

From Pixels to Affect: A Study on Games and Player Experience

Konstantinos Makantasis, Antonios Liapis and Georgios N. Yannakakis

Abstract: Is it possible to predict the affect of a user just by observing her behavioral interaction through a video? How can we, for instance, predict a user's arousal in games by merely looking at the screen during play? In this paper we address these questions by employing three dissimilar deep convolutional neural network architectures in our attempt to learn the underlying mapping between video streams of gameplay and the player's arousal. We test the algorithms in an annotated dataset of 50 gameplay videos of a survival shooter game and evaluate the deep learned models' capacity to classify high vs low arousal levels. Our key findings with the demanding leave-one- video-out validation method reveal accuracies of over 78% on average and 98% at best. While this study focuses on games and player experience as a test domain, the findings and methodology are directly relevant to any affective computing area, introducing a general and user-agnostic approach for modeling affect.

in Proceedings of the International Conference on Affective Computing and Intelligent Interaction, 2019. BibTex

PyPLT: Python Preference Learning Toolbox

Elizabeth Camilleri, Georgios N. Yannakakis, David Melhart and Antonios Liapis

Abstract: There is growing evidence suggesting that subjective values such as emotions are intrinsically relative and that an ordinal approach is beneficial to their annotation and analysis. Ordinal data processing yields more reliable, valid and general predictive models, and preference learning algorithms have shown a strong advantage in deriving computational models from such data. To enable the extensive use of ordinal data processing and preference learning, this paper introduces the Python Preference Learning Toolbox. The toolbox is open source, features popular preference learning algorithms and methods, and is designed to be accessible to a wide audience of researchers and practitioners. The toolbox is evaluated with regards to both the accuracy of its predictive models across two affective datasets and its usability via a user study. Our key findings suggest that the implemented algorithms yield accurate models of affect while its graphical user interface is suitable for both novice and experienced users.

in Proceedings of the International Conference on Affective Computing and Intelligent Interaction, 2019. BibTex

Pairing Character Classes in a Deathmatch Shooter Game via a Deep-Learning Surrogate Model

Daniel Karavolos, Antonios Liapis and Georgios N. Yannakakis

Abstract: This paper introduces a surrogate model of gameplay that learns the mapping between different game facets, and applies it to a generative system which designs new content in one of these facets. Focusing on the shooter game genre, the paper explores how deep learning can help build a model which combines the game level structure and the game's character class parameters as input and the gameplay outcomes as output. The model is trained on a large corpus of game data from simulations with artificial agents in random sets of levels and class parameters. The model is then used to generate classes for specific levels and for a desired game outcome, such as balanced matches of short duration. Findings in this paper show that the system can be expressive and can generate classes for both computer generated and human authored levels.

in Proceedings of the FDG Workshop on Procedural Content Generation, 2018. BibTex

Explainable AI for Designers: A Human-Centered Perspective on Mixed-Initiative Co-Creation

Jichen Zhu, Antonios Liapis, Sebastian Risi, Rafael Bidarra and G. Michael Youngblood

Abstract: Growing interest in eXplainable Artificial Intelligence (XAI) aims to make AI and machine learning more understandable to human users. However, most existing work focuses on new algorithms, and not on usability, practical interpretability and efficacy on real users. In this vision paper, we propose a new research area of eXplainable AI for Designers (XAID), specifically for game designers. By focusing on a specific user group, their needs and tasks, we propose a human-centered approach for facilitating game designers to co-create with AI/ML techniques through XAID. We illustrate our initial XAID framework through three use cases, which require an understanding both of the innate properties of the AI techniques and users' needs, and we identify key open challenges.

in Proceedings of the IEEE Conference on Computational Intelligence and Games, 2018. BibTex

Using a Surrogate Model of Gameplay for Automated Level Design

Daniel Karavolos, Antonios Liapis and Georgios N. Yannakakis

Abstract: This paper describes how a surrogate model of the interrelations between different types of content in the same game can be used for level generation. Specifically, the model associates level structure and game rules with gameplay outcomes in a shooter game. We use a deep learning approach to train a model on simulated playthroughs of two-player deathmatch games, in diverse levels and with different character classes per player. Findings in this paper show that the model can predict the duration and winner of the match given a top-down map of the level and the parameters of the two players' character classes. With this surrogate model in place, we investigate which level structures would result in a balanced match of short, medium or long duration for a given set of character classes. Using evolutionary computation, we are able to discover levels which improve the balance between different classes. This opens up potential applications for a designer tool which can adapt a human authored map to fit the designer's desired gameplay outcomes, taking account of the game's rules.

in Proceedings of the IEEE Conference on Computational Intelligence and Games, 2018. BibTex

Towards General Models of Player Affect

Elizabeth Camilleri, Georgios N. Yannakakis and Antonios Liapis

Abstract: While the primary focus of affective computing has been on constructing efficient and reliable models of affect, the vast majority of such models are limited to a specific task and domain. This paper, instead, investigates how computational models of affect can be general across dissimilar tasks; in particular, in modeling the experience of playing very different video games. We use three dissimilar games whose players annotated their arousal levels on video recordings of their own playthroughs. We construct models mapping ranks of arousal to skin conductance and gameplay logs via preference learning and we use a form of cross-game validation to test the generality of the obtained models on unseen games. Our initial results comparing between absolute and relative measures of the arousal annotation values indicate that we can obtain more general models of player affect if we process the model output in an ordinal fashion.

In Proceedings of the International Conference on Affective Computing and Intelligent Interaction, 2017. BibTex

Learning the Patterns of Balance in a Multi-Player Shooter Game

Daniel Karavolos, Antonios Liapis and Georgios N. Yannakakis

Abstract: A particular challenge of the game design process is when the designer is requested to orchestrate dissimilar elements of games such as visuals, audio, narrative and rules to achieve a specific play experience. Within the domain of adversarial first person shooter games, for instance, a designer must be able to comprehend the differences between the weapons available in the game, and appropriately craft a game level to take advantage of strengths and weaknesses of those weapons. As an initial study towards computationally orchestrating dissimilar content generators in games, this paper presents a computational model which can classify a matchup of a team-based shooter game as balanced or as favoring one or the other team. The computational model uses convolutional neural networks to learn how game balance is affected by the level, represented as an image, and each team's weapon parameters. The model was trained on a corpus of over 50,000 simulated games with artificial agents on a diverse set of levels created by 39 different generators. The results show that the fusion of levels, when processed by a convolutional neural network, and weapon parameters yields an accuracy far above the baseline but also improves accuracy compared to artificial neural networks or models which use partial information, such as only the weapon or only the level as input.

In Proceedings of the FDG workshop on Procedural Content Generation in Games, 2017. BibTex

Transforming Exploratory Creativity with DeLeNoX

Antonios Liapis, Hector P. Martinez, Julian Togelius and Georgios N. Yannakakis

Abstract: We introduce DeLeNoX (Deep Learning Novelty Explorer), a system that autonomously creates artifacts in constrained spaces according to its own evolving interestingness criterion. DeLeNoX proceeds in alternating phases of exploration and transformation. In the exploration phases, a version of novelty search augmented with constraint handling searches for maximally diverse artifacts using a given distance function. In the transformation phases, a deep learning autoencoder learns to compress the variation between the found artifacts into a lower-dimensional space. The newly trained encoder is then used as the basis for a new distance function, transforming the criteria for the next exploration phase. In the current paper, we apply DeLeNoX to the creation of spaceships suitable for use in two-dimensional arcade-style computer games, a representative problem in procedural content generation in games. We also situate DeLeNoX in relation to the distinction between exploratory and transformational creativity, and in relation to Schmidhuber's theory of creativity through the drive for compression progress.

in Proceedings of the Fourth International Conference on Computational Creativity, 2013, pp. 56-63. BibTex

Sentient World: Human-Based Procedural Cartography

Antonios Liapis, Georgios N. Yannakakis and Julian Togelius

Abstract: This paper presents a first step towards a mixed-initiative tool for the creation of game maps. The tool, named Sentient World, allows the designer to draw a rough terrain sketch, adding extra levels of detail through stochastic and gradient search. Novelty search generates a number of dissimilar artificial neural networks that are trained to approximate a designer's sketch and provide maps of higher resolution back to the designer. As the procedurally generated maps are presented to the designer (to accept, reject, or edit) the terrain sketches are iteratively refined into complete high resolution maps which may diverge from initial designer concepts. The tool supports designer creativity while conforming to designer intentions, and maintains constant designer control through the map selection and map editing options. Results obtained on a number of test maps show that novelty search is beneficial for introducing divergent content to the designer without reducing the speed of iterative map refinement.

in Proceedings of Evolutionary and Biologically Inspired Music, Sound, Art and Design (EvoMusArt), vol. 7834, LNCS. Springer, 2013, pp. 180-191. BibTex