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Abstract—Affective computing faces a pressing challenge: the
limited ability of affect models to generalise amidst varying
contextual factors within the same task. While well recognised,
this challenge persists due to the absence of suitable large-scale
corpora with rich and diverse contextual information within
a domain. To address this challenge, this paper introduces a
GameVibe, a novel corpus explicitly tailored to confront the lack
of contextual diversity. The affect corpus is sourced from 30 First
Person Shooter (FPS) games, showcasing diverse game modes and
designs within the same domain. The corpus comprises 2 hours
of annotated gameplay videos with engagement levels annotated
by a total of 20 participants in a time-continuous manner. Our
preliminary analysis on this corpus sheds light on the complexity
of generalising affect predictions across contextual variations in
similar affective computing tasks. These initial findings serve as
a catalyst for further research, inspiring deeper inquiries into
this critical, yet understudied, aspect of affect modelling.

Index Terms—affect modelling, domain generalisation, engage-
ment, video games, FPS games

I. INTRODUCTION

Domain generalisation refers to the process of constructing
models capable of generalising amongst varying contextual
factors within the same task. This process remains an unre-
solved challenge in affective computing (AC) and artificial
intelligence (AI) at large [1]. Although several datasets have
been introduced to combat this challenge in domains such as
object recognition [2], [3], constructing generalisable models
of affect still requires access to large corpora with diverse con-
texts and affect annotators. Digital games offer a compelling
case for understanding engagement dynamics, due to their
inherent complexity and interactive nature. Unlike traditional
media, digital games offer a dynamic experience introducing a
multitude of contextual factors that can influence engagement
levels, such as game mechanics or visuals [4]. However, player
affect modelling corpora feature at best few contexts (i.e.
games), hindering research on domain generalisation [5]–[7].

Motivated by the lack of multimodal corpora for the study of
affect dynamics across different contexts, this paper introduces
GameVibe, a game affect corpus consisting of 30 First Person
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Shooter (FPS) games annotated by 20 participants in terms of
engagement using the PAGAN annotation tool [8]; each video
is annotated by 5 participants. The 30 games all belong in the
same subdomain (FPS genre) but vary substantially in terms of
game mode, audiovisual style, and mechanics. The GameVibe
corpus is introduced for the study and analysis of affective
game computing [4] across different games of the same genre.
In this first paper featuring this corpus we attempt engagement
modelling within the same game: training a model on different
videos of one game and testing it on an unseen video of the
same game. Hence, we test the generalisability of engagement
models on unseen videos as annotated by unseen participants,
not included in the training data. This paper gauges how easy
it is to model engagement using audiovisual information from
the gameplay footage alone. Inspired by previous experiments
in this vein [9], [10], we assume that sufficient affect in-
formation is existent and interwoven within the audiovisual
gameplay footage. We employ two pre-trained state-of-the-art
Transformer encoders to create high-level representations of
gameplay pixels and audio, which are then used to train models
for predicting viewer engagement independently for each one
of the 30 games. We then analyse the impact of audiovisual
gameplay context on the performance of the obtained models.

This paper is novel in several ways. First, to the best of our
knowledge, this is the first time a diverse corpus of popular
and commercial-standard games has been used for the study
of viewer engagement. Second, the paper presents a general-
purpose methodology for modelling affect by fusing pixel
and sound information processed via pre-trained Transformer
architectures. Third, the initial results presented in this paper
serve as the baseline for this new multimodal corpus, inspiring
deeper inquiries into generalisable game affect models [4].

II. BACKGROUND

This section reviews relevant work on multimodal affect
models, and engagement as an affect dimension in particular.

A. Multimodal Affect Modelling

AC studies affective phenomena by developing computa-
tional models that can capture affect manifestations [11]. Since
visual elements (such as colour and composition) can act as
emotion elicitors, many affect models rely on such visual
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cues. Breuer and Kimmer [12] employed Convolutional Neural
Networks (CNNs) for diverse facial expression recognition
tasks, while Ng et al. [13] fine-tuned CNNs to detect emotions
on smaller datasets. Recognising the potential of games to
effectively trigger emotional responses, Makantasis et al. [10]
trained CNNs to correlate gameplay footage with arousal,
while Pinitas et al. [14] employed pre-trained Vision Trans-
formers and neuroevolution to train a preference learner to
predict arousal in gameplay footage from arcade games.

Beyond visual cues, the capacity of other input modalities as
affect predictors, such as audio and physiology, has also been
studied extensively [15]–[18]. Martinez et al. [19] pioneered
the use of CNNs for detecting affect through physiological
signals. In a similar vein, Makantasis et al. [9] used CNNs
to model arousal based on raw video footage and sound
frequencies while Zhang et al. [20] employed a Convolutional
Long Short-Term Memory (LSTM) network and a 1D-CNN
to extract spatio-temporal facial and bio-sensing features.
Recently. Yang et al. [21] employed a novel low-dimensional
cluster-based contrastive learning algorithm for emotion recog-
nition in conversations, achieving state-of-the-art performance
across different benchmarks.

This paper is motivated by the above studies, but focuses
on generalisable multimodal affect modelling. The purpose
of the GameVibe corpus is to investigate the degree to which
multimodal information can be used to derive models of affect
able to generalise well within the same task under varying
contextual factors. While this paper evaluates generalisability
within the same game, the format of the corpus allows for
future research on generalisability across games.

B. Engagement Modelling

Engagement stands out as a crucial component in human-
computer interaction (HCI), serving as a multifaceted construct
including affective responses of the user [22]. A growing
body of research focuses on modelling various aspects of
user engagement. Indicatively, Dermouche and Pelachaud [23]
leveraged facial expressions, head movements, and gaze cues
to predict user engagement in real-time dyadic interactions
using an LSTM. Ting et al. [24] modelled student engagement
within virtual learning environments using Bayesian Networks.
Recently, Pan et al. [25] proposed an interpretable CNN for
estimating streamer engagement from videos.

Over the last few years, games have emerged as a com-
pelling domain for HCI and AC research [4], [26], prompting a
new research in engagement modelling within games. Notably,
Melhart et al. [27] leveraged viewers’ chat logs as a proxy
for engagement, using a small neural network to predict
moment-to-moment gameplay engagement solely based on
game telemetry. Similarly, Xue et al. [28] introduced a Dy-
namic Difficulty Adjustment framework aimed at maximising
player engagement, reflected in play time. Finally, Pinitas et
al. [6] employed pre-trained models and time-conditioning to
predict long-term engagement in the commercial shooter game
Tom Clancy’s The Division 2 by Ubisoft.

TABLE I: Features of the GameVibe corpus

Number of Participants 20 (5 per session)
Number of Gameplay Videos 120 (30 per session)
Video database size 2 hours
Number of Elicitors 30 games
Gameplay video duration 1 minute
Annotation Perspective Third-person
Annotation Type Continuous unbounded
Affect Labels Engagement

Similar to the above research, this paper studies engagement
modelling within the genre of FPS games but focuses instead
on the relationship between different game contexts and the
validity of the engagement models obtained.

III. THE GameVibe CORPUS

The GameVibe corpus [29], which is available for down-
load1, consists of audiovisual footage of gameplay from 30
FPS games (detailed in Section III-A) annotated for viewer
engagement by 20 participants in total (detailed in Section
III-B). To derive models of engagement (see Section IV), we
process both the annotation traces and the audiovisual data as
described in Section III-C.

A. The Games

The GameVibe corpus consists of annotated gameplay
videos from 30 dissimilar, popular commercial FPS games;
see Fig. 1 and Table I. The selection of games and their
corresponding gameplay videos was based on several crite-
ria. Primarily, we aimed to encompass a broad spectrum of
audiovisual stimuli for engagement annotation, incorporating
diverse graphical styles (such as photo-realistic, retro, cartoon-
like, etc.) and gameplay modes (including Battle Royale,
single player, and Deathmatch, elaborated in Section V-C).
Additionally, we ensured that the selected videos did not
include any comments from players or users. Instead, they
solely featured the sounds from the game itself. Finally, all
videos were limited to a maximum of 15 seconds of non-
gameplay content, such as cut scenes or transition animations.

B. The Corpus

Below we describe the processed multimodal data from the
gameplay videos, and the affect annotation process.

1) Corpus Modalities: We consider the two available
modalities of game context information: video frames and
in-game audio. The former modality consists of a series of
high-resolution and low-resolution videos of in-game footage
sampled at 30Hz: normally 1280×720 pixels for more recent
games and 541×650 for older games. The duration of each
gameplay segment is 60 seconds. The auditory information is
extracted from the video and consists of stereo sounds sampled
at 44 kHz. In older games this usually corresponds to midi-
type of background music; in more recent games the audio
usually consist of dynamic sound environments that respond
to player actions.
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Fig. 1: Screenshots from the 30 different FPS games annotated
for engagement. List of game titles: (1) Apex Legends; (2)
Battlefield 1942; (3) Blitz Brigade; (4) Borderlands 3; (5)
Corridor 7; (6) Counter Strike 2016; (7) Counter Strike 2018;
(8) Counter Strike 2019; (9) Counter Strike: Global Offensive;
(10) Doom; (11) Dusk; (12) Far Cry 1; (13) Fortnite; (14)
Heretic; (15) Hrot; (16) Insurgency; (17) Modern Combat:
Sandstorm; (18) Medal of Honor 2010; (19) Medal of Honor
1999; (20) Medal of Honor: Pacific Assault; (21) Operation
Bodycount; (22) Outlaws; (23) Overwatch 2; (24) PUBG;
(25) Superhot; (26) Team Fortress 2; (27) Void Bastards; (28)
Wolfenstein 3D; (29) Wolfenstein New Order; (30) Wolfram
Wolfenstein.

Fig. 2: Engagement annotation via the RankTrace [30] tool of
the PAGAN platform [8]

2) Engagement Annotation: Gameplay videos were anno-
tated in terms of the viewer’s own engagement while watching,
in a first-person manner. This annotation task was carried
out across four different sessions with each session being
annotated by 5 different (randomly assigned) participants.
Participants were provided a concise definition of engagement
as follows: “A high level of engagement is associated with
a feeling of tension, excitement, and readiness. A low level
of engagement is associated with boredom, low interest, and
disassociation with the game”. Participants were then asked

1https://osf.io/p4ngx/

to annotate 30 short (1 minute) FPS gameplay videos, one
video per game. The order of the 30 videos was randomised
to minimise participants’ habituation effects. We use different
gameplay videos per session as the corpus is solicited to study
the generalisability of affect models across varying contexts.
Participants could pause the annotation process at any time by
pausing the video itself. Each session lasted approximately 30
minutes per participant and thus, collectively, the 4 sessions
(30 min each) offer 2 hours of annotated gameplay videos in
total (see Table I).

Collecting reliable first-person engagement labels simulta-
neously for multiple games is impossible due to the high
cognitive load of the task [5], [31]. Hence, we argue that
offering short videos as stimuli for affect annotation provides
a good tradeoff between annotation reliability and richness
of engagement stimuli. Note that, given the 30 games in the
corpus, each participant is required to be physically in the lab
for 30 minutes which is the maximum time for engagement
annotation in games as reported in the literature [6]. The
20 annotators involved in this study (5 per session) were
affiliated with the University of Malta (research staff and
graduate students). All annotators completed all annotation
tasks in the same room, ensuring consistent room and lighting
conditions. Additionally, the same machine and input/output
devices, including a screen for visual stimuli, headphones for
auditory stimuli, and a mouse scroll wheel were offered for
the annotation task.

Data collection was carried out in two phases. First, each
participant was asked to perform two simple yet controlled
Quality Assurance (QA) tests (one visual and one auditory
QA test) to ensure the annotators’ reliability [32]. After the
QA tests and a small break, the participant was asked to watch
30 randomly ordered 1 minute videos (one video per game)
and annotate engagement in a continuous manner using the
RankTrace [30] annotation tool of the PAGAN platform [8]
(see Fig. 2). It is worth noting that care was taken to ensure
data was collected and analysed respecting GDPR and ethical
principles of AI and games research [33]. The core properties
of the corpus are summarised in Table I.

C. Data Pre-Processing

The data preprocessing approach follows best practices for
multimodal affect modelling as described in relevant studies
[6], [10]. In particular, each video of a session is split into non-
overlapping time windows of 3 seconds. The time windows
of the input modalities (frames and sound) are shifted by 1
second to the annotation time window, accounting for the re-
action time [34] between stimulus (gameplay) and annotation.
Each time window consists of a sequence of frames and the
corresponding sound.

For the visual modality we convert all videos into frames. As
each video is 60 seconds long and sampled at 30Hz we end up
with 1, 800 frames per video and 90 frames per time window.
Several studies have shown that not all of these frames carry
the same amount of information [35], and that many of them
can be considered redundant; particularly, consecutive frames
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[36]. We follow a similar practice to reduce the computational
load and we thus sample 16 RGB frames (downscaled to
224×224×3 pixels) in constant intervals within each time
window. We preserve the number of colour channels under
the assumption that transforming the frames to grayscale
would omit vital visual information. For the sound modality,
we extract audio clips within 3 second time windows and
convert them from stereo to mono by averaging across the
two channels (see Section IV-A).

When it comes to the engagement traces (i.e. 1 trace per
annotator, 5 traces per gameplay video), we perform a min-
max normalisation, transforming the unbounded engagement
values to [0, 1] on a per-trace basis. Each engagement an-
notation trace is similarly processed into time windows of 3
seconds, deriving an average engagement value for each time
window per annotator.

IV. MODELLING ENGAGEMENT

As a preliminary experiment, this paper presents a study
on engagement modelling within the same game, using an
unseen video to test accuracy of a support vector machine
model (see Section IV-C) trained on three videos from the
same game. Importantly, both the participants and the video
context are different between training and test sets (see Section
V-A). Given the time-continuous traces of engagement, we
treat this as a preference learning task (see Section IV-B). We
leverage pre-trained models to derive the latent embeddings
from audio and pixels of the video (see Section IV-A).

A. Representing Visual and Auditory Cues

We exploit pre-trained Transformers [37] to create high-
level representations of audiovisual information. Transformers’
multi-head self-attention modules can effectively capture the
global spatio-temporal dependencies of the content. This paper
uses two different pre-trained Transformer architectures with
frozen parameters as feature extractors for the frame and audio
modalities respectively.

The encoder which extracts features from frames is fed with
16 scaled-down RGB images as input and processes them
via a Vision Transformer (ViT) [38] architecture that outputs
768 features. The ViT is pre-trained on Kinetics-400 [39] via
Masked Video Distillation [40]. The encoder which extracts
audio features, instead, processes monophonic sound via a
Transformer architecture that outputs 527 multi-label class
probabilities. This Transformer-based architecture, also called
BEATs, is pre-trained on the AS-2M [41] dataset via Masked
Audio Modelling. [42].

B. Preference Transformation

Preference Learning (PL) involves learning to rank data
points, and is a suitable learning paradigm for any supervised
task as long as the labels represent ordinal relationships [43].
PL is an appealing framework for affective computing since
ordinal representations of emotion seem to offer more reliable
and valid models of affect [44]. Drawing inspiration from

previous work [45], [46] we formulate the engagement predic-
tion task as a PL problem through a pairwise transformation
process (see Fig. 3). In this paper, due to the short duration
of the stimuli, we assume a global ranking of all time win-
dows within the 1-minute video rather than only considering
preferences between consecutive time windows [47]. Initially,
time windows (20 per video) are selected (with their gameplay
representations and corresponding 5 annotation values, one per
participant) and pairs are formed (380 pairs in total per video).
For each pair, the difference between the same annotator’s
engagement values is calculated. Each difference is assigned a
preference: positive differences correspond to engagement in-
crease and are labelled as 1, negative differences correspond to
engagement decrease (−1), and no change as 0. Unlike some
previous work which used an ambiguity threshold [9], [14],
here we treat “no change” labels (0) as direct equality between
engagement values of the two time windows. Subsequently,
the agreement among all five annotators is tallied. If at least
4 out of 5 annotators agree on the preference label (i.e. if the
annotations exhibit the same preference), the pair is retained;
otherwise, it is discarded. Based on extensive PL work [6],
[10], [44], we also discard pairs where the dominant label
is “no change” as it demonstrates no clear preference. This
process is repeated across all pairs within a video, filtering
out labels where annotators disagree substantially in their
assessment; this ensures the reliability of the annotated corpus.
When it comes to the transformation of the audio and visual
data, we compute the difference of latent representations for
each pair of time windows. Finally, we form the same pairs of
time windows in reverse order, yielding balanced preference
datasets of approximately 514 samples per game, on average.

Since the latent embeddings of the audio or visual data
are fairly large for the size of the training dataset (from 527
up to 1, 295 parameters, see Fig. 3), we use dimensionality
reduction techniques before processing the data for preference
learning (see Section IV-C). Specifically, we apply Principal
Component Analysis (PCA) [48] (see Fig. 3) on the latent
embeddings to produce a 20-dimensional feature vector used
as input for training. The same training set employed to train
the preference learner (see Section V-A) is used to train the
PCA module, and the test data is projected onto the same
20-dimensional space.

C. Engagement Predictor

The 20 principal components extracted from PCA module
serve as the input of the engagement predictor. We explored
several methods and architectures for the downstream task of
modelling engagement. Due to the limited volume of data
available per game, we report results employing RankSVM
[49], a widely used ranking method based on Support Vector
Machines (SVM). We used a simple SVM with an RBF kernel,
regularisation parameter C = 1 and coefficient γ = 5% of
the data variance, trained on top of the extracted features to
classify the preference labels (see Fig. 3).
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Fig. 3: The three model architectures employed for engagement preference learning, using pixel information, sound information,
or both modalities.

V. RESULTS

This section presents the results from the engagement mod-
elling task (on a per-game basis) described in Section V-A.

A. Experimental Protocol

Performance of engagement across each game indepen-
dently is assessed via a demanding leave-one-session-out
cross-validation strategy. We split the data into training and
test sets, ensuring that data in each set belong to different
sessions and thereby vary in terms of context and annotators
(see Section III-B2). The hyperparameters of PCA and SVM
were optimised using a grid-search protocol. For PCA, we
determined that 20 principal components explained more than
95% of the variance in the training set, after testing between 10
and 100 components in steps of 10. For SVM, we considered
C values ranging from 0.1 to 1 in steps of 0.1, ultimately
selecting C = 1 as the best fit for the training data. The
parameter γ = 5% corresponds to the inverse value of the
number of PCA components. The performance of models
is evaluated in terms of accuracy; baseline performance is
50% due to the pairwise transformation followed (see Section
IV-B). Statistical significance is established via the 95% confi-

dence interval on the Student’s t-distribution due to the limited
number of samples (4 folds) and the deterministic nature of
SVM [50].

B. Engagement Models Per Game

Figure 4 shows the average test accuracy of the models
across the 30 games of the GameVibe corpus. Evidently,
models trained solely on the audio modality perform poorly,
with 18 out of 30 games above the baseline (4 games are
significantly better) and 9 games yielding an accuracy above
60%. The best accuracy obtained is 74% for the Doom game.
Surprisingly, the accuracy of audio-only models is very low
for Modern Combat: Sandstorm (29%) and Medal of Honor
2010 (19%). Models trained on frames alone perform slightly
better with 19 out 30 games above the baseline (5 games are
significantly better). Out of those, 10 games yield accuracy
values higher than 60%. The best accuracy (83%) is obtained
for the Corridor 7 game. Training on the fused audiovisual
modalities results in test accuracy values between the two uni-
modal experiments: 18 out of 30 games mark higher average
accuracy values than the baseline (4 games significantly better)
with 9 games above 60%. The best accuracy for the bimodal
input is Counter Strike 2018 game, with 78.4% test accuracy.
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Fig. 4: Average test accuracy for engagement preference.
Error bars depict 95% confidence intervals. The Single Player,
Deathmatch and Battle Royale games are depicted, respec-
tively, as white, grey and black bars. The dotted line cor-
responds to the majority class baseline. The x-axis labels
correspond to the game IDs displayed in Fig. 1.

To examine how the participants’ annotation patterns im-
pacted the models, we calculate the dominant label (engage-
ment increasing or decreasing) across all time windows and
videos per game (i.e. 20 annotation traces per game, 5 per
video). We expect that game datasets where one engagement
relationship is more dominant leads to more reliable models,
despite the efforts taken to balance the dataset by reversing
the order of the pairs (see Section IV-B). Indeed the Pearson’s
correlation coefficient between the dominance of one label
over the other and the test accuracy (ρ = 0.23) is statistically
significant (p < 0.05). Figure 5 shows the tradeoff between
the dominance of one label and model accuracy, indicating the

Fig. 5: Scatter plot of the majority annotation trend and the
average test accuracy of the fusion model across all 30 games.

majority label across all videos per game.

C. Engagement Modelling Across Game Modes

We examine the predictive power of our engagement models
across different contexts, specifically three game modes. In
Single Player games the gameplay often revolves around com-
pleting objectives or progressing through a narrative storyline.
Deathmatch games are multi-player games where the primary
objective is to eliminate opponents and score the most kills
within a set time limit. Finally, Battle Royale games feature
many players competing in a shrinking play area; players
must survive by eliminating their opponents while scavenging
for weapons, items, and resources. The GameVibe corpus
comprises of 20 Single Player games, 6 Deathmatch games
and 4 Battle Royale games.

Figure 6 illustrates the average performance of the games in
a specific game mode. While Deathmatch and Single Player
games can be predicted from gameplay frames with an average
accuracy of 57% and 56%, respectively, Battle Royale games
mark a 42% accuracy on average, way below the baseline. We
contend that Battle Royale games feature many unpredictable
variables, but also slower and more calculated gameplay;
this makes the task of engagement annotation itself more
challenging based on 1-minute stimuli.

VI. DISCUSSION

This paper introduced a large corpus of diverse stimuli
(as FPS games) and a total of 600 annotation traces of
engagement on 120 gameplay videos. Based on a preliminary
analysis using outputs of pre-trained models of visuals and
audio, we observe that achieving an accurate prediction of
engagement using visuals and audio alone is challenging.
Visual inputs are slightly better predictors than audio input
(with a relative increase of 8% in test accuracy values averaged
across games), while their fusion performs somewhere in-
between. An analysis of the original stimuli indicates that
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Fig. 6: Average test accuracy per game mode. Error bars depict
95% confidence intervals.

models’ accuracy is impacted by both gameplay mode and
annotation trends.

As expected, the variety of the corpus collected (with
30 games published between 1992 and 2023) makes the
engagement modelling task challenging. While the use of
pre-trained Transformer-based models offers a quick way of
deriving latent vectors, these models are not trained on similar
corpora and are expected to give better embeddings on more
realistic audiovisual depictions. Exploring different pre-trained
models, or fine-tuning these models [51] to more contextual
corpora (e.g. older computer graphics and sounds), may lead to
more nuanced results. On the other hand, modern games with
more realistic audiovisual styles tend to have more nuanced,
complex gameplay (e.g. the Battle Royale subgenre) which
makes the actual engagement annotation task more difficult
and thus leads to larger deviations of the affective ground truth.
Future work should explore leveraging more annotated videos
per game or providing longer stimuli, especially for modern
games, in order to improve the within-game context variation
of this corpus. This is especially true given the insights about
videos with mostly descending engagement, as future work
could explore the temporal and causal sequence [52] of events
and their impact on engagement.

The extensive GameVibe corpus collected and reported in
this paper is intended to address the generalisation challenge in
AC by providing high-quality,engaging, yet diverse stimuli and
their annotations. In the preliminary analysis of this paper, we
focus on assessing how easy it is to predict engagement of an
unseen video annotated by unseen participants but within the
same game. Given that each video shows different gameplay
contexts and, often, new game levels or pre-scripted events,
this already tests generalisation of engagement modelling to
some degree. Future work, however, should explore the limits
of generalisation by testing how well-performing engagement
models perform on entirely unseen games in a zero-shot
manner. More ambitiously, generalisation can be tested by
training models on multiple games and testing them on unseen
games, similarly to [53]; this could shed light on the impact
of gameplay mode as discussed in Section V-C. Beyond
this corpus, we hope that this paper highlights the issue of

generalisation within affect modelling and opens up a broader
avenue of research using (diverse) games as affect elicitors.
Such research would be fundamental for games user research
[54], human-computer interaction, and AC at large.

VII. CONCLUSIONS

This paper presented the GameVibe corpus, designed to fa-
cilitate research on domain generalisation in affect modelling.
We focus on engagement modelling in the context of a game
genre, namely 30 dissimilar FPS games. For this paper, we
did not explore generalisability across games but we tested
both unimodal (audio and visual) and bimodal approaches
using pre-trained Transformer-based models for predicting
engagement in unseen footage of the same game the model
is trained on. Our findings demonstrate varying degrees of
success across different games, highlighting the complexity of
modelling engagement across diverse gaming experiences. The
study also emphasised the impact of game modes, suggesting
that the nature of player interactions impacts the predictabil-
ity of viewer engagement. Finally, our analysis reveals the
influence of gameplay context on both model predictions and
annotator behaviours. We hope that the GameVibe corpus and
the preliminary engagement modelling experiments on a per-
game basis reported in this paper will expedite further research
at the crossroads of AC and domain generalisation.

ETHICAL IMPACT STATEMENT

This paper presents a dataset of affect annotations collected
from participants in a laboratory setting. Participants provided
informed consent for the data collection process, and all
personally identifiable information was removed from the
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[18] E. Lieskovská, M. Jakubec, R. Jarina, and M. Chmulı́k, “A review on
speech emotion recognition using deep learning and attention mecha-
nism,” Electronics, vol. 10, no. 10, p. 1163, 2021.

[19] H. P. Martinez, Y. Bengio, and G. N. Yannakakis, “Learning deep phys-
iological models of affect,” IEEE Computational intelligence magazine,
vol. 8, no. 2, pp. 20–33, 2013.

[20] Y. Zhang, M. Z. Hossain, and S. Rahman, “Deepvanet: A deep end-
to-end network for multi-modal emotion recognition,” in Procceedings
of the 18th Intl. Conf. on Human-Computer Interaction (INTERACT),
2021, p. 227–237.

[21] K. Yang, T. Zhang, H. Alhuzali, and S. Ananiadou, “Cluster-level
contrastive learning for emotion recognition in conversations,” IEEE
Trans. on Affective Computing, 2023.

[22] J. J. Appleton, S. L. Christenson, D. Kim, and A. L. Reschly, “Measuring
cognitive and psychological engagement: Validation of the student
engagement instrument,” Journal of school psychology, vol. 44, no. 5,
pp. 427–445, 2006.

[23] S. Dermouche and C. Pelachaud, “Engagement modeling in dyadic
interaction,” in Proc. of the Intl. Conf. on Multimodal Interaction, 2019,
pp. 440–445.

[24] C.-Y. Ting, W.-N. Cheah, and C. C. Ho, “Student engagement modeling
using bayesian networks,” in Proc. of the IEEE Intl. Conf. on Systems,
Man, and Cybernetics, 2013, pp. 2939–2944.

[25] S. Pan, G. J. Xu, K. Guo, S. H. Park, and H. Ding, “Video-based
engagement estimation of game streamers: An interpretable multimodal
neural network approach,” IEEE Trans. on Games, 2023.

[26] G. N. Yannakakis and J. Togelius, Artificial intelligence and games.
Springer, 2018, vol. 2.

[27] D. Melhart, D. Gravina, and G. N. Yannakakis, “Moment-to-moment
engagement prediction through the eyes of the observer: Pubg streaming
on twitch,” in Proc. of the Intl. Conf. on the Foundations of Digital
Games, 2020, pp. 1–10.

[28] S. Xue, M. Wu, J. Kolen, N. Aghdaie, and K. A. Zaman, “Dynamic
difficulty adjustment for maximized engagement in digital games,” in
Proc. of the Intl. Conf. on World Wide Web Companion, 2017, pp. 465–
471.

[29] M. Barthet, M. Kaselimi, K. Pinitas, K. Makantasis, A. Liapis, and
G. N. Yannakakis, “Gamevibe: A multimodal affective game corpus,”
arXiv preprint arXiv:2407.12787, 2024.

[30] P. Lopes, G. N. Yannakakis, and A. Liapis, “RankTrace: Relative and
unbounded affect annotation,” in Proc. of the Intl. Conf. on Affective
Computing and Intelligent Interaction, 2017, pp. 158–163.

[31] A. Metallinou and S. Narayanan, “Annotation and processing of con-
tinuous emotional attributes: Challenges and opportunities,” in Proc. of
the IEEE Intl. Conf. and Workshops on Automatic Face and Gesture
Recognition, 2013.

[32] M. Barthet, C. Trivedi, K. Pinitas, E. Xylakis, K. Makantasis, A. Liapis,
and G. N. Yannakakis, “Knowing your annotator: Rapidly testing the
reliability of affect annotation,” in Proc. of the Intl. Conf. on Affective
Computing and Intelligent Interaction Workshops and Demos, 2023.

[33] D. Melhart, J. Togelius, B. Mikkelsen, C. Holmgård, and G. N.
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