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Abstract
Can we replicate the power of evolutionary algorithms in discover-
ing good and diverse game content via generative machine learning
(ML) techniques? This question could subvert current trends in
procedural content generation (PCG) and beyond. By learning the
behavior of quality-diversity (QD) evolutionary algorithms through
ML, we stand to overcome the computational challenges inherent in
QD search and ensure that the benefits of QD search are reproduced
by efficient generative models. We introduce a novel, end-to-end
methodology namedMachine Learning of Quality Diversity (MLQD)
which is executed in two steps. First, tailored QD evolution creates
large and diverse training datasets from the ground up. Second,
sophisticated ML architectures such as the Transformer learn the
datasets’ underlying distributions, resulting in generative models
that can emulate QD search via stochastic inference. We test MLQD
on the use-case of generating strategy game map sketches, a task
characterized by stringent constraints and a multidimensional fea-
ture space. Our findings are promising, demonstrating that the
Transformer architecture can capture both the diversity and the
quality traits of the training sets, successfully reproducing the be-
havior of a range of tested QD algorithms. This marks a significant
advancement in our quest to automate the creation of high-quality,
diverse game content, pushing the boundaries of what is possible
in PCG and generative AI at large.

CCS Concepts
•Applied computing→Computer games; •Computingmethod-
ologies→Generative and developmental approaches; •Human-
centered computing → Visualization techniques.
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Figure 1: High level representation of MLQD as employed for
a level generation task. AQD algorithm (CPA in this example)
generates a large and diverse training set of game levels. A
generative model (a Transformer in this example) is trained
on this set. The model’s output resembles the distribution of
the training set by machine learning the behavior of QD.
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1 Introduction
Procedural Content Generation (PCG) represents a dynamic field
[17] within artificial intelligence (AI) and games research. PCG
research leverages a diverse array of advanced AI technologies such
as machine learning (ML) [30] and evolutionary algorithms [32].
Inspired by research on PCG through quality diversity (PCGQD)
[10] and PCG via machine learning (PCGML) [30], we identify an
ideal combination of the two that can address the challenges of ML
in finding large and diverse game-specific datasets to train on.

The introduced method, Machine Learning of Quality Diversity
(MLQD), is self-sufficient (see Fig. 1). MLQD operates without train-
ing data such as a corpus of real game levels [31], as it can generate
as large and controllable a dataset as needed—if provided appro-
priate genetic operators and quantifiable design metrics. Moreover,
the trained generative model can in theory produce diverse con-
tent on each call, while evolutionary search may need to traverse
a large space of solutions in an inefficient, stochastic manner. In
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this paper, we implement MLQD by leveraging a new algorithm
for dataset generation: Cross-Pollination of Axis-Aligned Archives
(CPA) is specifically designed for the rapid generation of large and
diverse datasets in high-dimensional feature spaces. For generative
modeling we train state-of-the-art Transformer [35] models. The
goal of this project is to replicate the high quality and diversity of
the training sets through ML.

We test MLQD on the challenging task of generating diverse
sets of map sketches for strategy games [20]. This use-case is char-
acterized by stringent constraints and a high-dimensional feature
space. Within this constrained use-case, we test whether the newly
introduced CPA algorithm (adapted for constrained search) can
produce good and diverse levels; then, we assess whether Trans-
formers trained on the generated datasets produce levels that are
good (i.e. feasible) and diverse (i.e. explore most of the problem
space). Finally, we assess whether the distribution of MLQD content
matches the distribution of the content it is trained on, and the
performance tradeoffs of using ML instead of QD search. Our find-
ings suggest that it is possible to mimic the generative properties of
QD algorithms (in this case using constraint satisfaction as quality)
through Transformer-based ML models. Our findings pave the way
for the advancement of both QD and ML within the context of PCG
in games, and beyond.

2 Related Work
MLQD leverages the power and addresses the weaknesses of both
QD-based and ML-based PCG paradigms, which we describe below.

2.1 PCG through Quality Diversity
PCGQD [10] tackles the creation of diverse content for games,
harnessing a plethora of evolutionary search algorithms around
Quality-Diversity (QD) [23]. PCGQD has been applied on many
different PCG tasks, powered by many different QD algorithms,
as surveyed by [10]. A fundamental strength of QD algorithms
lies in their ability to generate diverse sets of solutions, sparsely
distributed in a user-controllable behavior space [6]. This capacity
is pivotal in PCG, as it can provide designers with a rapid overview
of the solution space, while it can enhance content variety and thus
replayability for players.

However, applying QD algorithms to PCG has its challenges.
First, game content is complex and multi-faceted [18], impeding
the operation of QD algorithms which is based on stochastic search
guided by (simple and quantifiable) notions of quality and diversity.
Moreover, as explained in [34] typical QD algorithms grapple with
the “curse of dimensionality,” and their application in higher dimen-
sional behavior spaces is restricted by computational bottlenecks.

Significant efforts to alleviate the challenges of QD can be found
in the literature [7, 34]. Our approach, however, treats the entire
problem of diverse content generation as an ML task. Therefore,
here we treat QD algorithms as a stepping stone towards obtaining
models that can generate diverse content directly, without the use
(or need) of stochastic search.

2.2 PCG via Machine Learning
PCGML studies the generation of game content using machine
learning models trained on existing content [30]. As with PCGQD,

PCGMLhas leveraged a plethora ofML algorithms to generatemany
types of game content, as surveyed by [11]. The main advantage
of PCGML is its capacity to efficiently generate new content that
nevertheless retains desirable characteristics found in existing data.

A significant hurdle for PCGML is the scarcity of comprehensive
datasets [30]. Unlike other ML areas such as image generation and
text generation, game content is much more limited in volume, or
even inaccessible due to copyright concerns. This could be miti-
gated by leveraging pre-trained Large Language Models (LLMs),
which can be fine-tuned with smaller datasets. While this method
is currently explored [27], pre-trained LLMs hardly follow ethical
research protocols [14] and moreover raise two concerns for their
applicability. First, fine-tuning and inference with LLMs demands
substantial computational resources. Second, the availability of
such models to the broader public may not continue indefinitely.

In our study, we address the issue of data scarcity through a novel
QD approach that efficiently generates large and diverse training
sets. We can thus fully exploit the capabilities of the Transformer
architecture [35] (the foundational technology behind numerous
LLMs), while retaining flexibility regarding the model’s parameters
and computational resources.

3 Machine Learning of Quality Diversity
In the context of PCGQD and PCGML, we formulate a methodology
for replicating the behavior of QD algorithms through efficient ML
models, thus extending the reach of QD to demanding use cases
such as real-time diverse content generation. To meet this goal, we
need (a) access to extensive datasets of diverse content and (b) ML
architectures and sufficient computational resources to train the
models. Our contributions address (a) efficiently generating a large
and diverse dataset through evolutionary QD search, and (b) lever-
aging state-of-the-art Transformer architectures for learning the
patterns of the dataset in an unsupervised manner. We emphasize
that MLQD is self-sufficient as it does not require access to external
datasets, which may be sparse or copyrighted [30], and it does not
require pre-trained models which may not (a) be tailored to the
problem at hand, (b) be open-source or transparent, (c) be ethically
sourced [14]. This does not mean, however, that MLQD does not re-
quire clever algorithmic design (in terms of genetic representation
and variation operations) and expert knowledge to design appropri-
ate metrics for behavior characterization. The very same benefit of
controllable exploration for the designer can become a challenge in
cases where designing appropriate metrics is difficult—not unlike
how designing a good fitness function can be more expensive than
the optimization itself. Approaches of automatically discovering
diversity metrics [5] could make MLQD more self-sufficient in that
regard; however, in this paper we leverage hand-crafted metrics.

In this paper, we leverage a novel stochastic algorithm for ef-
ficient generation of diverse training data (see Section 3.1), and
customize a Transformer architecture to generate new tile-based
content (see Section 3.2).

3.1 Cross-Pollination of Axis-Aligned Archives
Cross-Pollination of Axis-Aligned Archives (CPA) aims to diversify
solutions in complex behavior spaces by mitigating the “curse of
dimensionality”. We note that CPA is not a QD algorithm on its own:
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3. Offspring Placement
- Select Placement Archive
(e.g. F8, at random)
- Evaluate Offspring 
(F8 value)
- Place Offspring
(in Cell 3, based on F8 value)

1. Parent Selection:
- Select Parent Archive
(e.g. F2, at random)
- Select Parent
(e.g. from Cell 6, at random)

2. Mutation
- Generate Offspring

Figure 2: Core algorithmic steps of CPA, in a hypothetical
10-dimensional behavior space (F), where each archive has
been subdivided into 16 cells.

its goal is to solely explore a problem space defined by different
(quantifiable) design features, similar to novelty search [15]; it can
become aQD algorithm by adding constraint satisfaction as proxy of
quality (see Section 5.1.1). CPA utilizes 𝑁 one-dimensional archives,
one for each quantifiable design feature of the artifact. Through
“cross-pollination,” offspring are exchanged between archives, indi-
rectly boosting diversification across the entire feature space. The
key benefit of this approach is that generated individuals are only
evaluated along a single feature, thus shrinking the computational
overhead of high-dimensional feature spaces. Unlike typical evolu-
tionary computationmethods that focus on the solutions of the final
population, CPA maintains an evolutionary history record (EHR)
which stores all generated individuals throughout evolution, thus
enabling the collection of large datasets without compromising
computational efficiency.

The algorithm’s operation is visualized in Fig. 2 and summarized
below. CPA establishes 𝑁 one-dimensional archives, one for each
feature of the behavior space: those are selected by the designer.
Each archive is then divided into discrete cells for specific value
ranges of the design feature. During the initialization phase of CPA,
the following steps are repeated: An individual is generated via
random initialization, and is stored in the EHR. Then, a placement
archive is selected at random and the individual is evaluated along
the feature of that archive. Finally, the individual is placed at the
corresponding cell, based on its feature value, always replacing
any existing occupant of that cell. The core operation phase of
CPA starts with randomly selecting an archive and then randomly
selecting a parent from within it. The parent produces an offspring
through mutation; the offspring is stored in the EHR, and is then
placed in a (random) archive following the same approach as in the
initialization phase.

3.2 Transformer architecture
In this paper we employ the Transformer architecture used in [24,
25] (see Fig. 3), as it performs very well in challenging tasks—given
sufficient data and compute. This architecture is primarily aimed at
sequence generation, while the artifacts in our use case (see Section

Figure 3: The Transformer architecture, and a visual example
of how it generates strategy maps during inference.

4) are 2D arrays. To address this apparent incompatibility, we follow
a common approach in the literature [28, 29] and treat the levels as
flattened, 1D arrays during training and inference (see Section 4.2).

For the Transformer, its input layer takes sequences of integers
and its output predicts the immediate next token. The first hidden
layer is a token and position embedding layer, which projects each
input token into an 𝑁 -dimensional embedding space. The core of
the model consists of several stacked Transformer decoder layers.
Each decoder layer uses self-attention mechanisms with several
attention heads followed by a feed-forward network, allowing the
model to weigh the importance of different tokens within the same
sequence differently, and improving its ability to understand context
and relationships between tokens. Finally, the model’s output is
processed by a dense layer configured to predict the next token
in the sequence by outputting a probability distribution across all
possible tokens in the vocabulary.

4 Use-Case: Game Level Generation
Low-resolution tile-based game maps have been a staple testbed
for constrained QD [1] and constrained novelty search [21]. In this
paper, we use map sketches of 8 × 8 tiles (see Fig. 4) as the target
domain [19], as they are simple enough to generate rapidly, have a
multitude of evaluation metrics established in the literature [19],
and can be up-scaled to create complex realistic maps suitable for
modern games [20]. Moreover, map sketches have been used in
several studies [19, 21], allowing us to leverage existing methods for
e.g. initialization and variation. While different map sizes have been
tested for map sketch generation [21], we focus on the smallest map
size explored in past studies (8 × 8 tiles), as computing pathfinding
metrics (see Section 4.1.5) is faster and constraint satisfaction is less
challenging than in larger maps.

4.1 Evolutionary Search Process
For experiments in this paper, we compare different evolutionary
search methods for generating training sets for ML (see Section 5.1).
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(a) Genotype (b) Visualization (c) Connectivity Graph

(d) Conversion of a genotype to a token sequence

Figure 4: Example of a generated feasible level for our use-
case, showing different ways to represent and parse the level.
Fig. 4d shows the process of converting a genotype into a
token sequence as part of the Transformer’s training set.

However, all methods use the following steps for initialization,
mutation, and evaluation, building on literature on constrained
divergent search [21] for map sketches.

4.1.1 Representation. Map sketches are represented as 2D arrays
of integers (Fig. 4) where each integer (0, 1, 2, 3) corresponds to a
tile type: Floor, Wall, Resource, and Base, respectively. Walls block
movement, while other tiles allow passage. Pathfinding is limited
to orthogonal connections between passable tiles, allowing walls
to block more paths. Bases and resources are considered “special”,
due to their functional importance in strategy games.

4.1.2 Constraints. Following [21], we test all maps for the follow-
ing three constraints: (a) there must be exactly 2 bases; (b) there
must be between 4 and 10 resources; (c) all special tiles (bases and
resources) must be connected. Maps that fail any constraint are
assigned a feasibility score, with higher values indicating that they
are closer to being feasible. Since initialization and mutation op-
erators used in our experiments ensure (a) and (b), we assess the
feasibility score only in terms of disconnected paths among bases
and disconnected paths between bases and resources, as summa-
rized in Eq. (1), where𝑏 and 𝑟 are the number of bases and resources,
respectively, while 𝑐𝑏 and 𝑐𝑟 are the number of connected base pairs
and connected base-resource pairs, respectively.

𝐹𝑖𝑛𝑓 =
1
2

𝑐𝑏

𝑏·(𝑏 − 1) +
1
2
𝑐𝑟

𝑟 ·𝑏 (1)

4.1.3 Initialization. Initialization follows [21], ensuring that the
entire initial population consists of feasible solutions. Starting from
a map consisting only of floor tiles, 2 random floor tiles are changed
to bases, while between 4 and 10 floor tiles are changed to resources.
This ensures that the number of special tiles (bases and resources)
meet the constraints, while all bases and resources are connected

Table 1: 10 custom metrics used for measuring the diversity
of the population across all tested algorithms, in addition to
the six metrics from [19]. 𝑁 is the total number of map tiles,
while other metrics are described in Section 4.1.5.

Floor Tiles Ratio

𝐹1−3 = 𝑐/𝑁Walls Ratio
Resources Ratio
Horizontal Symmetry

𝐹4−7 =
∑𝑁

𝑛=1𝑄𝐶𝑛,𝐶′
𝑛

𝑁

Vertical Symmetry
Diagonal Symmetry
Antidiagonal Symmetry
Wall Islands 𝐹8 = 2·𝐼𝑤/𝑁
Passable Graph Diameter 𝐹9 = 𝑑𝑔/(𝑁 − 1)
Bases Distance 𝐹10 = 𝑑𝑏1→𝑏2/(𝑁 − 1)

(the third constraint) since there are no impassable wall tiles in
these initial maps.

4.1.4 Mutation. Evolutionary variation operators are limited to
mutation in this work, following the method of [21] which consis-
tently upholds constraints on the number of bases and resources.
Mutation is applied to a random portion of the total tiles on the map
(between 5% to 20%). Two possible changes are applied to these
tiles: any tile may be swapped with an adjacent one, or a Wall or
Floor tile may be converted to Floor or Wall respectively.

4.1.5 Behavior Characterization. To highlight the power of our pro-
posed approach, we select as many features as we could identify for
these maps in relevant literature [1, 19]. The resulting list includes
16 behavior characterizations bounded within [0, 1], which can be
calculated on the map itself, without requiring simulations [33].
We leverage six metrics tailored to strategy game maps from [19]
(resource safety, resource safety balance, base safety, base safety
balance, exploration, exploration balance as 𝐹11-𝐹16 in that order),
and introduce 10 more tile-based metrics described in Table 1. 𝐹1-𝐹3
assess tile-type ratios through a shared formula, where 𝑐 is the
number of tiles of the considered type and 𝑁 the total number of
tiles (𝑁 = 64 in this paper). 𝐹4-𝐹7 assess symmetries found to be
important by human users [20]. In their shared formula, 𝐶′

𝑛 is the
symmetric tile of 𝐶𝑛 (vertically, horizontally, diagonally or antidi-
agonally) and 𝑄𝐶𝑛,𝐶

′
𝑛
is 1 if 𝐶𝑛 = 𝐶′

𝑛 or 0 otherwise. 𝐹8 evaluates
the ratio of graph-islands (𝐼𝑤 ) formed by wall tiles (i.e. connected
groups of wall tiles, shown in dark gray in Fig. 4c) over the max-
imum possible number of graph-islands (𝑁 /2). 𝐹9 evaluates the
ratio of the passable graph diameter 𝑑𝑔 , i.e. the maximum value of
shortest paths between any tile in the map, over the maximum pos-
sible distance (𝑁 −1). 𝐹10 evaluates the ratio of the distance between
bases (𝑑𝑏1→𝑏2) over the maximum possible distance (𝑁 − 1).

4.2 Machine Learning Process
Based on the general method of Section 3.2, we specify the parame-
ters of the Transformer used for our experiments.

4.2.1 Model parameters. Since we are generating map sketches of
8 × 8 tiles, we set the maximum input length of the model to 65
to match the total number of map tiles (64) plus the initial neutral
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token. The vocabulary size is set to 6, matching the 4 tile types plus
the neutral symbol and the mask symbol. The dimensionality of
the token and position embedding layer and the size of the feed-
forward layer are both set to 256: these values were determined
from a grid-search (based on cross-entropy loss on the validation
set) to find the optimal values considering options of 4, 16, 64 and
256 for both parameters. The Transformer model has 2 decoder
layers and 2 attention heads, after exploring the performance of 1
and 2 for both parameters.

4.2.2 Dataset Pre-processing. As mentioned in Section 3.2, the 2D
maps are flattened into 1D arrays during training and inference, to
accommodate the Transformer’s mode of operation. As shown in
Fig. 4d, the genotype (2D array) is first flattened into a 1D array.
Then, all tokens are offset by 2, so that values of (2, 3, 4, 5) represent
floor, wall, resource and base tiles accordingly. The neutral token
of value 1 is inserted at the beginning of the array, shifting all other
values to the right, and extending the sequence size to 65. The
number 0 is reserved as a masking token during inference.

4.2.3 Training. For a collected dataset of 𝐷 datapoints, we shuffle
them before assigning them to training, validation and test sets.
The training set contains 80% of the data, the validation set contains
15% of the data and the test set is only 5% of the data. The validation
set is used for early stopping, if 3 consecutive epochs return an
increasing validation error. The validation set is also used to select
the optimal parameters for the grid-search method described in
Section 4.2.1.

4.2.4 Inference. Inference takes place as visualized in Fig. 3: first,
we provide the model with the initial token (1) and iteratively let
the model predict the next token, adding it to the input sequence
for the next prediction. Out of the probabilities provided for the
next token by the model, we select one by applying top-𝑝 search, as
in [12], with a cutoff point of 0.9. As soon as the output sequence
is complete (i.e. its length is 65 tokens), it is converted back to
its proper form of a 2D array, following the reverse process from
Section 4.2.2.

5 Experimental Protocol
In this paper, our experiments explore the impact that the training
set has on the MLQD method, specifically regarding the sensitivity
of the ML methods on different degrees of diversity in the train-
ing data produced from different QD search processes. In order
to provide a fair comparison, we use three different QD search
approaches to generate datasets of 106 maps in their evolutionary
history records and repeat the process 10 times in independent runs.
The details for the three QD search processes for generating the
data are detailed in Section 5.1. The datasets are split into training
data (8·105), validation data (1.5·105), and test data (0.5·105) and
used to train Transformer-based models to generate new maps. The
hypotheses regarding the performance of the models, and metrics
for evaluating them, are detailed in Section 5.2.

5.1 QD Methods for Dataset Generation
We test the performance of MLQD algorithms, using different
datasets for training, in order to assess the level of diversity required
by the Transformer architectures. Since our use case includes hard

constraints that would result in unplayable content (see Section
4.1.2), we leverage the feasible-infeasible population paradigm [13]
and test three evolutionary search methods for dataset generation.
All algorithms’ operation has been adjusted to store every feasible
individual in the evolutionary history record. We let each algorithm
run until 106 feasible individuals have been collected, and repeat
the process 10 times. We note here that we leverage algorithms
that optimize diversity (CPA, novelty search) and convert them to
QD algorithms by adding constraint satisfaction as a minimum
criterion for quality [10], rather than optimizing quality as a sepa-
rate objective as in e.g. [16]. All of the below constrained search
algorithms follow the two-population approach of [13].

5.1.1 Feasible-Infeasible CPA. Feasible-Infeasible CPA (FI-CPA)
uses two groups of archives, separating feasible from infeasible
individuals. The feasible archive group includes 16 one-dimensional
archives, corresponding to the 16 features detailed in Section 4.1.5.
There is a single one-dimensional archive in the infeasible archive
group, diversifying infeasible individuals based on their feasibility
score 𝐹𝑖𝑛𝑓 of Eq. (1). Each archive is divided into 65 equal bins,
evenly spaced within the range [0, 1]. The initial population size
is set to 1, 105 individuals, equal to the total bin count across all
archives. During initialization, generated individuals are evaluated
for feasibility; feasible ones are placed in one of the 16 archives
of the feasible group based on CPA procedures, while infeasible
ones are placed in the infeasible archive. During its operation, FI-
CPA alternates between selecting a parent from the feasible or
the infeasible group. Offspring of either parent are evaluated for
feasibility and placed either in the infeasible archive or a random
archive (triggering evaluation for that metric) among the 16 in the
feasible group. Feasible offspring are always added to the EHR.

5.1.2 Feasible-Infeasible Novelty Search. The Feasible-Infeasible
Novelty Search (FINS) algorithm is a variant of Novelty Search [15]
tailored for constrained problems. FINS was used for map sketch
evolution [21] and serves as a baseline for constrained diversity
search. We introduce minor modifications to the version in [21], by
storing all feasible individuals generated in the EHR and by limiting
the size of the novel archive. FINS operates on two populations
which may vary in size as evolution progresses. The infeasible
population selects parents to maximize their feasibility score of
Eq. (1), while the feasible population selects parents to maximize
the novelty score. The novelty score is calculated as the average
distance from the 𝑘 nearest neighbors in the feasible population and
the (feasible) novel archive. The novel archive stores the most novel
individuals per generation, and in our case is limited to 3, 000 entries;
in our version of FINS, the five most novel feasible individuals in
each generation are added to the novel archive, replacing the oldest
members when the archive reaches capacity. Following [21], we set
𝑘 = 20 in our experiments. Distance is measured as the Euclidean
distance of the 16 metrics detailed in Section 4.1.5.

FINS is population-based; in every run, we seed it with 1, 105
individuals as per the initialization process of Section 4.1.3, which
are assigned to either the feasible or the infeasible population. FINS
uses minimal elitism, retaining the most novel feasible individual
and the least infeasible individual from their respective populations.
In each generation, 1, 103 parents are selected (50% from the feasible
population via roulette-wheel selection based on their novelty score,
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and 50% from the infeasible population based on their feasibility
score). The selection process produces 1, 103 offspring. All feasible
offspring are stored in the EHR and evaluated on their novelty score.
The five most novel offspring are placed in the archive as described
above. Infeasible offspring are assigned 𝐹𝑖𝑛𝑓 of Eq. (1). Aside from
the elite individuals, offspring replace the previous populations.

5.1.3 FI-Random. We employ a random strategy as our worst-case
baseline. FI-Random is a deliberately impaired version of FINS that
attempts to maximize feasibility on the infeasible population but
performs random search on the feasible population. All components
remain the same as in FINS, except for the absence of a novel archive
since feasible individuals are selected randomly for mutation, As in
all other methods, every feasible offspring is added to the EHR.

5.2 Hypotheses
We aim to identify how the training data impacts the quality and di-
versity of the generated output of a Transformer model. We expect
that more diverse datasets that uniformly distribute their points
across ad-hoc feature dimensions, such as those produced by the
CPA method, lead to better generative models that match the diver-
sity of the training set. Specifically, we aim to address the following
hypotheses:

H1 Constraint Satisfaction: The Transformer model captures
feasibility constraints, generating (mostly) feasible solutions.

H2 Generalization: The Transformer model generalizes well,
producing unique content that is also not present in the
training data.

H3 Behavior Space Diversity: The Transformer model can
generate behaviorally diverse output.

H4 Behavior Space Distribution Similarity: Output from the
Transformer model matches the (behavioral) distribution of
its training set.

H5 Efficiency Comparison: Trained Transformer models are
faster to generate solutions than evolutionary search.

Each hypothesis is tested using a combination of quantitative
metrics and comparative analyses as follows.

5.2.1 Metrics for H1. We calculate the dataset’s feasibility ratio as
the number of feasible generated solutions over the total number
of generated solutions.

5.2.2 Metrics for H2. We capture generalization capacity of the
Transformer model through two metrics: Unseen ratio as the ratio
of solutions not found in the training set, and Unique ratio as the
ratio of solutions without duplicates in the generated set. Here, we
consider exact matches between tested maps for these calculations,
as even a small difference in the map may lead to major gameplay
imbalances.

5.2.3 Metrics for H3. We assess diversity using two metrics: one
captures the extent of the feature space that is explored, and the
other captures the dataset’s distribution on the feature space. Given
that we wish to see how the training data affects the Transformer,
we compare the QD-evolved training data (8 · 105) with the same
number of ML-generated samples. To measure the extent of the fea-
ture space, we use the notion of a hypervolume as the volume of the
bounding hypercube of the 16-dimensional feature vector described

Table 2: Feasibility ratio (H1) and computation time in min-
utes (H5) for producing 106 feasible maps. Results are aver-
aged from 10 runs, and include 95% confidence interval.

Dataset (QD) Transformer (ML)
Feasibility ratio

FI-CPA 39.6%±0.26% 87.5%±2.05%
FINS 45.0%±0.07% 93.6%±3.24%

FI-Random 44.3%±0.21% 88.9%±4.57%
Computation time

FI-CPA 37.5±0.38 115.4±2.24
FINS 196.8±1.57 105.0±3.47

FI-Random 25.4±0.68 111.4±5.80

in Section 4.1.5. For the distribution of the dataset 𝜙 , we follow [9]
and evaluate its exploration uniformity 𝑈 (𝜙) as the similarity be-
tween the probability distribution of the feature vector set of 𝜙
and a uniform distribution. It is calculated as𝑈 (𝜙) = 1 − J(P𝜙 ,Q),
where P𝜙 is the estimated distribution of 𝜙 , Q the uniform distribu-
tion, and J their Jensen-Shannon Divergence [8]. We estimate the
density P𝜙 using Kernel Density Estimation [4] with a 0.23 band-
width (from preliminary testing) and a Gaussian kernel. Given the
large dataset size of 𝜙 and for the sake of computational efficiency,
we derive𝑈 (𝜙) as the average from 1, 000 re-runs of a subset of 𝜙
consisting of 103 datapoints sampled randomly from 𝜙 .

5.2.4 Metrics for H4. Wemeasure the similarity between the distri-
bution of a ML-generated dataset 𝜙𝑀𝐿 and its QD-evolved training
set 𝜙𝑄𝐷 . We adapt the exploration uniformity of Section 5.2.3 and
measure distribution similarity 𝑆 (𝜙𝑀𝐿, 𝜙𝑄𝐷 ) = 1 − J(P𝜙𝑀𝐿

, P𝜙𝑄𝐷
),

where P𝜙𝑀𝐿
is the estimated distribution of 𝜙𝑀𝐿 , P𝜙𝑄𝐷

is the esti-
mated distribution of 𝜙𝑄𝐷 , and J their Jensen-Shannon Divergence.
As above, we measure this 𝑆 (𝜙𝑀𝐿, 𝜙𝑄𝐷 ) as the average from 1, 000
re-runs of a random subset of 𝜙𝑀𝐿 and a random subset of 𝜙𝑄𝐷

with 103 datapoints each.

5.2.5 Metrics for H5. We measure computational efficiency based
on the time each method takes to generate 106 feasible individuals.
Computation time is measured on a desktop computer equipped
with an I9-12900K processor, 64GB of DDR5 RAM and an RTX3070
GPU (8GB GDDR6 RAM).

6 Results
We report our findings based on the hypotheses tested (see Section
5.2). Statistical significance, where reported, is established at 95%
confidence (𝑝 < 0.05). When reporting significant differences across
multiple comparisons, the Bonferroni correction is applied [3].

6.1 Testing Constraint Satisfaction
Table 2 reports the feasibility ratio of the QD-evolved and the ML-
generated data. It is important to note that for the QD datasets, we
measure the number of total individuals generated by the time the
EHR reached 106 feasible solutions. For the ML-generated data, we
follow a similar approach and generate content until 106 feasible
solutions are generated, at which point we measure how many
individuals were generated at that point. Unsurprisingly, Table 2
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Table 3: Ratio of unseen and unique maps in ML-generated
output (H2), and distribution similarity with the training
set (H4). Results are calculated on the first 8 · 105 feasible
ML-generated individuals, to match the size of the training
set. Results are averaged from 10 runs, and include the 95%
confidence interval.

Transformer Unseen Ratio Unique Ratio 𝑆 (𝜙𝑀𝐿, 𝜙𝑄𝐷 )
FI-CPA 99.1% ± 0.21% 98.00% ± 0.43% 0.84 ± 0.02
FINS 100.0% ± 0.00% 100.00% ± 0.00% 0.82 ± 0.04

FI-Random 100.0% ± 0.00% 99.99% ± 0.01% 0.89 ± 0.04

shows that the constrained problem of map generation poses a
challenge to evolutionary search, and only around 40% of offspring
are feasible. All FI-based evolutionary algorithms, however, tend
to tackle the constrained problem at a similar level. CPA yields a
significantly lower feasibility ratio than the other methods, since
both FINS and FI-Random apply selection pressure based on feasi-
bility in their infeasible populations. On the other hand, since the
Transformer is only trained on feasible individuals, its feasibility
ratio is much higher than for QD search. Again, differences are
not that pronounced depending on the training set, although the
Transformer trained on FINS-generated data has a significantly
higher feasibility ratio than that trained on FI-CPA. We observe
that overall the likelihood of generating an infeasible individual
by the Transformer is less than 15% (and less than 7% at the best
case). This means that the model may yet produce a level that is un-
playable (e.g. has only one base, or bases are not reachable), which
could be frustrating if shown to a human player. Since the likeli-
hood of this occurring is non-zero, it would be important to test
for constraint satisfaction of ML-generated content before showing
it to a human user, and re- generate-and-test [32] if the content is
infeasible. Based on the above, H1 is validated as the ML-generated
content is mostly playable.

6.2 Testing Generalization
Table 3 captures how the model generalizes in terms of creating
content unseen in the training set and unique (without duplicates
in the ML-generated set). Transformers trained on FINS and FI-
Random always produce unseen maps across all runs, and for FINS-
based datasets even always produce unique solutions (among a
sample of 8 · 105 maps). The FI-CPA datasets lead Transformers to
sometimes produce data in the training set (1% chance) or data that
the player may have seen already (2% chance). This likelihood is
very low, but non-zero, likely because the more niche maps in the FI-
CPA dataset are on the borders of the feasible space (see Section 6.3)
where only few maps satisfy the constraints. Trying to match the
diversity of the training set, the Transformer trained on FI-CPAmay
revisit past maps. Despite the small chance of non-unique maps,
the findings validate H2: all Transformers show generalization
capabilities, and can generate both unseen and unique content with
a very high likelihood.

Table 4: Behavior space diversity (H3) of training sets and
trainedmodels’ output. The first 8 ·105 feasible ML-generated
maps are compared to the training sets, to match their size.
Results are averaged from 10 runs, and include the 95% con-
fidence interval.

Training Set (QD) Transformer (ML)
Hypervolume (×103)

FI-CPA 2.8 ± 0.3 2.3 ± 0.3
FINS 1.0 ± 0.0 0.9 ± 0.1

FI-Random 0.8 ± 0.0 0.7 ± 0.1
Exploration uniformity:𝑈 (𝜙)

FI-CPA 0.292 ± 0.0006 0.282 ± 0.0029
FINS 0.279 ± 0.0004 0.263 ± 0.0044

FI-Random 0.277 ± 0.0004 0.269 ± 0.0038

6.3 Testing Behavior Space Diversity
Table 4 compares the behavior space diversity metrics (see Section
5.2.3) of the training datasets evolved via QD variants and the con-
tent generated by Transformers trained on each dataset. Here, we
see the power of FI-CPA as its EHR datasets have a significantly
higher hypervolume and exploration uniformity than both FINS
and FI-Random. This means that FI-CPA explores more of the edges
of the feasible space, and also produces maps that are more evenly
distributed along the 16-dimensional feature vector used to par-
tition the space. We see that both diversity metrics drop in the
ML-generated dataset compared to the training set, with significant
differences between model-generated set and training set (a relative
drop as high as 17% for hypervolume, on FI-CPA, and as high as
5.5% for𝑈 (𝜙), on FINS). However, the diversity of the Transformer
trained on the more diverse training set (FI-CPA) is still significantly
better than respective ones using FINS and FI-Random. Moreover,
targeted search by FINS does have an effect, as the Transformer
trained on FINS has significantly higher hypervolume than the
Transformer trained on FI-Random. Considering all 30 training sets
and 30 ML-generated sets (from 10 independent runs), there is a
significant correlation (𝜌 = 0.956 for hypervolume and 𝜌 = 0.737
for𝑈 (𝜙)) between the training set’s and the ML-generated outputs’
behavior space diversity, validating H3.

6.4 Testing Behavior Space Distribution
Similarity

Table 3 includes the distribution similarity between the QD training
set and the ML-generated set, calculated as 𝑆 (𝜙𝑀𝐿, 𝜙𝑄𝐷 ) in Section
5.2.4. High values of 𝑆 (𝜙𝑀𝐿, 𝜙𝑄𝐷 ) mean that the distribution of the
ML-generated set matches the training set; we observe that this is
true regardless of the evolutionary algorithm used to produce the
training set. There are no significant differences in 𝑆 (𝜙𝑀𝐿, 𝜙𝑄𝐷 )
between QD dataset generation methods. However, we note that
this finding strongly favors FI-CPA, as its training sets are signif-
icantly more diverse than other methods (see Section 6.3). Thus,
ML-generated datasets that match this distribution generate maps
along all axes of exploration. By comparison, even if 𝑆 (𝜙𝑀𝐿, 𝜙𝑄𝐷 )
is high for FI-Random, the hypervolume of its training set is very
small and thus the ML-generated content will not be particularly
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diverse. That said, H4 is validated: regardless of training set, distri-
bution similarity remains high.

6.5 Testing Efficiency
Table 2 shows the compute time for reaching 106 feasible results,
either via evolutionary search or via inference on the Transformer.
In terms of evolutionary search, we see that FI-Random is signifi-
cantly faster than other methods, as expected since it only performs
constraint satisfaction checks but no evaluations on feasible maps.
FI-CPA is fairy fast, as it performs only one feasibility check and
one feature evaluation per feasible individual, while FINS is very
slow as it has to measure 16-dimensional distances from all individ-
uals in the feasible population. While on the one hand evolution is
performing very fast with FI-CPA while generating very diverse
results (see Section 6.3), Transformers seem to be surprisingly slow.
On average, it takes 6 milliseconds to generate a feasible map with
a Transformer (regardless of training set). This is not a major time
delay, especially considering that most generated maps will be fea-
sible on the first try (see Section 6.1), but we expected Transformers
to be faster than the training set generation process. For a real-time
interface, this is likely an acceptable delay for a player or a designer.
However, it is difficult to argue that H5 is validated in terms of the
efficiency boost of the Transformer compared to the search-based
QD approach. We revisit this limitation in Section 7.

6.6 Qualitative Results
Table 5 shows representative results generated by a single run
of the FI-CPA algorithm, alongside those produced by the Trans-
former model trained on its output. The selected results correspond
to the extreme (minimum or maximum) values of each behavior
characterization (𝐹1 − 𝐹16).

A key observation is that both FI-CPA and its trained Trans-
former model successfully identify solutions that reach the extreme
values of most metrics. This is particularly noteworthy for metrics
with complex computations, such as those in 𝐹11 − 𝐹16. Overall, the
Transformer’s extreme values per feature closely match those in its
training set. Interestingly, in some cases, the Transformer surpasses
its training set, achieving even more extreme values: specifically for
max 𝐹2, max 𝐹8, min 𝐹1, min 𝐹5, and min 𝐹15. These results suggest
that the Transformer occasionally ventures slightly beyond the
behavior space hypervolume of its training data.

Additionally, in certain cases, the Transformer’s outputs are
nearly identical to their respective training samples. This is par-
ticularly evident in min 𝐹1, max 𝐹5, and min 𝐹9, where the Trans-
former’s generated samples, while technically different from their
corresponding ones in the training set (i.e., not all tiles match), are
visually and functionally almost indistinguishable. This phenome-
non may stem from the difficulty of finding genotypically diverse
solutions at the selected extremes. In other words, there may be
fewer solutions that exist in those regions, and therefore it is harder
to establish diversity. Conversely, in scenarios where a similar pat-
tern could be intuitively expected — such as the minimum values of
symmetries — the Transformer’s outputs differ significantly from
the training set, suggesting a greater genotypic variability.

In any case, this study’s focus on behavioral diversity means that
genotypic variability was only examined in a simplistic manner

(see Section 5.2.2). However, the qualitative results showcase that
a fine-grained perspective on genotypic diversity may be worth
pursuing in parallel to behavioral diversity in future work.

7 Discussion
This paper introduced MLQD as a way of generating large, diverse,
and feasible datasets via QD evolutionary search for training pow-
erful ML models that can generate diverse content on demand via
stochastic inference. The use case showed how a constrained ver-
sion of the proposed CPA diversification mechanism can generate
large datasets for training by collecting generated content through-
out the evolutionary process. Tests on the models’ performance for
different training sets showed that the chosen Transformer architec-
ture can generate (mostly) feasible maps that are unique and novel.
We also note the impact of the training set: more diverse training
sets lead to more diverse generators, as the Transformers univer-
sally match the distribution of the data (in terms of ad-hoc design
features) they are trained on. Finally, the Transformer produces
a feasible individual within 6 milliseconds on average: given the
small size of the content (a map of 64 tiles), this is not particularly
fast but could likely be improved on a machine that is more tailored
for GPU calculations than the one used in these experiments.

We note that the inference times was an unexpected finding and
a limitation of our approach. When conducting this research we as-
sumed that stochastic generation via Transformers would be much
more computationally efficient than e.g. evolution. While CPA is
explicitly designed to be computationally efficient, we expected
Transformers to be even more so. It is worth noting that the ML
model generates good and diverse content nearly every time (at 6
milliseconds), while evolution may need extensive compute before
producing something complex enough for use due to the search
process. We also note that the experiment uses a simple artifact (a
map of 64 tiles) due to the extensive heuristics and evolutionary
operators found in the literature [21] that made the experiment
design faster. However, we should explore how MLQD operates (es-
pecially in terms of inference time) on more complex game content
such as larger and more complex maps, or in generated rulesets
that would require simulation-based evaluations [32] when evolv-
ing a training set. Other directions for future work could assess
the impact the generative model has on MLQD, exploring differ-
ent Transformer architectures or other ML algorithms, including
“inexpensive” language-based models as in [22].

Finally, while MLQD aims to train stochastic generators of di-
verse content—largely addressing issues with ML models produc-
ing “generic” output—there is more potential for ML as a genera-
tor trained on evolutionary search processes. A generative model
trained on parent-offspring pairs could learn to predict an offspring
from its parent guided by changes in terms of feasibility or feature
values as ground truth discovered through the stochastic search of
a QD algorithm. Such an ML-controlled variation operator could be
used in tandem with an evolutionary process or as a controllable
variation operator, e.g. for mixed-initiative level design tools to
modify a user’s creation [20] towards a user-defined goal.

While we argue that the main strength of MLQD is that it is
self-sufficient, critics can argue that this statement overlooks the hu-
man effort of designing appropriate diversity metrics. Admittedly,
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FI-CPA Transformer
Floor Tiles Wall Tiles Resources H. Symmetry Floor Tiles Wall Tiles Resources H. Symmetry

max 𝐹1 = 0.91 max 𝐹2 = 0.84 max 𝐹3 = 0.16 max 𝐹4 = 0.91 max 𝐹1 = 0.91 max 𝐹2 = 0.86 max 𝐹3 = 0.16 max 𝐹4 = 0.88

min 𝐹1 = 0.05 min 𝐹2 = 0 min 𝐹3 = 0.06 min 𝐹4 = 0 min 𝐹1 = 0.03 min 𝐹2 = 0 min 𝐹3 = 0.06 min 𝐹4 = 0

V. Symmetry Diag. Symmetry Anti. Symmetry Wall Islands V. Symmetry Diag. Symmetry Anti. Symmetry Wall Islands
max 𝐹5 = 0.91 max 𝐹6 = 0.96 max 𝐹7 = 1 max 𝐹8 = 0.66 max 𝐹5 = 0.91 max 𝐹6 = 0.89 max 𝐹7 = 1 max 𝐹8 = 0.69

min 𝐹5 = 0.03 min 𝐹6 = 0 min 𝐹7 = 0 min 𝐹8 = 0 min 𝐹5 = 0 min 𝐹6 = 0 min 𝐹7 = 0 min 𝐹8 = 0

Graph Diam. Bases Dist. Res. Safety R. Saf. Balance Graph Diam. Bases Dist. Res. Safety R. Saf. Balance
max 𝐹9 = 0.56 max 𝐹10 = 0.51 max 𝐹11 = 0.91 max 𝐹12 = 1 max 𝐹9 = 0.54 max 𝐹10 = 0.49 max 𝐹11 = 0.90 max 𝐹12 = 1

min 𝐹9 = 0.05 min 𝐹10 = 0.02 min 𝐹11 = 0 min 𝐹12 = 0.09 min 𝐹9 = 0.05 min 𝐹10 = 0.02 min 𝐹11 = 0 min 𝐹12 = 0.1

Base Safety B. Safety Balance Exploration Exp. Balance Base Safety B. Safety Balance Exploration Exp. Balance
max 𝐹13 = 1 max 𝐹14 = 0.53 max 𝐹15 = 1 max 𝐹16 = 1 max 𝐹13 = 1 max 𝐹14 = 0.50 max 𝐹15 = 1 max 𝐹16 = 1

min 𝐹13 = 0.02 min 𝐹14 = 0.02 min 𝐹15 = 0.16 min 𝐹16 = 0.04 min 𝐹13 = 0.02 min 𝐹14 = 0.02 min 𝐹15 = 0.15 min 𝐹16 = 0.04

Table 5: Indicative samples from the FI-CPA algorithm’s first run (left) and the Transformer model trained on the output of
that run (right). Each sample represents an extreme (minimum or maximum) value of a behavior characterization (𝐹1 − 𝐹16)
from its respective dataset.
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one of the reasons for using a well-studied level generation prob-
lem [21] as a use-case is because the literature already provided
behavior characterizations [19] and a straightforward initializa-
tion and variation process [21] for this problem. While MLQD does
require human expert knowledge and intuition, arguably all PCG re-
search hinges on human expertise: from devising generative scripts
for constructive approaches, to collecting a corpus of levels for
PCGML, to designing genetic operators and fitness functions for
search-based PCG [26]. Future work, however, could explore how
MLQD can operate more freely: e.g. with more freeform represen-
tations, such as game descriptions in natural language and evolved
via LLM-based genetic operators [2], and with automatically de-
fined behavior characterizations e.g. via dimensionality reduction
methods as in [5].

8 Conclusion
This paper introduces the notion of MLQD: a self-sufficient way
of building a ML generative model capable of producing feasible
and diverse content on demand. The MLQD pipeline is validated
using a high-performing Transformer architecture combined with
an efficient way of producing diverse content via Cross-Pollination
of Axis-Aligned Archives. Results on an established testbed for
QD search (as constrained diversity) indicate that the Transformer
can capture the diversity of the training set and—provided a large
enough dataset—can generate feasible, novel, and unique content
on demand. Future work should validate these findings in a more
complex domain, with more computationally heavy evaluations,
and with different ML architectures.
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