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Abstract

We introduce DeLeNoX (Deep Learning Novelty Ex-
plorer), a system that autonomously creates artifacts in
constrained spaces according to its own evolving inter-
estingness criterion. DeLeNoX proceeds in alternating
phases of exploration and transformation. In the explo-
ration phases, a version of novelty search augmented
with constraint handling searches for maximally diverse
artifacts using a given distance function. In the trans-
formation phases, a deep learning autoencoder learns to
compress the variation between the found artifacts into
a lower-dimensional space. The newly trained encoder
is then used as the basis for a new distance function,
transforming the criteria for the next exploration phase.
In the current paper, we apply DeLeNoX to the cre-
ation of spaceships suitable for use in two-dimensional
arcade-style computer games, a representative problem
in procedural content generation in games. We also sit-
uate DeLeNoX in relation to the distinction between ex-
ploratory and transformational creativity, and in relation
to Schmidhuber’s theory of creativity through the drive
for compression progress.

Introduction

Within computational creativity research, many systems
have been designed that create artifacts automatically
through search in a given space for predefined objectives,
using evolutionary computation or some similar stochastic
global search/optimization algorithm. Recently, the novelty
search paradigm has aimed to abandon all objectives, and
simply search the space for a set of artifacts that is as diverse
as possible, i.e. for maximum novelty (Lehman and Stanley
2011). However, no search is without biases. Depending on
the problem, the search space often contains constraints that
limit and bias the exploration, while the mapping from geno-
type space (in which the algorithm searches) and phenotype
space (in which novelty is calculated) is often indirect, intro-
ducing further biases. The result is a limited and biased nov-
elty search, an incomplete exploration of the given space.
But what if we could characterize the bias of the search
process as it unfolds and counter it? If the way space is be-
ing searched is continuously transformed in response to de-
tected bias, the resulting algorithm would more thoroughly
search the space by cycling through or subsuming biases. In
applications such as game content generation, it would be

particularly useful to sample the highly constrained space of
useful artifacts as thoroughly as possible in this way.

In this paper, we present the Deep Learning Novelty Ex-
plorer (DeLeNoX) system, which is an attempt to do exactly
this. DeLeNoX combines phases of exploration through
constrained novelty search with phases of transformation
through deep learning autoencoders. The target applica-
tion domain is the generation of two-dimensional spaceships
which can be used in space shooter games such as Galaga
(Namco 1981). Automatically generating visually diverse
spaceships which however fulfill constraints on believability
addresses the “content creation” bottleneck of many game ti-
tles. The spaceships are generated by pattern-producing net-
works (CPPNs) via augmenting topologies (Stanley 2006).
In the exploration phases, DeLeNoX finds the most diverse
set of spaceships possible given a particular distance func-
tion. In the transformation phases, it characterizes the found
artifacts by obtaining a low-dimensional representation of
their differences. This is done via autoencoders, a novel
technique for nonlinear principal component analysis (Ben-
gio 2009). The features found by the autoencoder are or-
thogonal to the bias of the current CPPN complexity, ensur-
ing that each exploratory phase has a different bias than the
previous. These features are then used to derive a new dis-
tance function which drives the next exploration phase. By
using constrained novelty search for features tailored to the
concurrent complexity, DeLeNoX can create content that is
both useful (as it lies within constraints) and novel.

We will discuss the technical details of DeLeNoX shortly,
and show results indicating that a surprising variety of space-
ships can be found given the highly constrained search
space. But first we will discuss the system and the core idea
in terms of exploratory and transformational creativity, and
in the context of Schmidhuber’s theory of creativity as an
impulse to improve the compressibility of growing data.

Between exploratory and
transformational creativity

A ubiquitous distinction in creativity theory is that between
exploratory and transformational creativity. Perhaps the
most well-known statement of this distinction is due to Bo-
den (1990) and was later formalized by Wiggins (2006) and
others. However, similar ideas seem to be present in al-
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Figure 1: Exploration transformed with DeLeNoX: the
flowchart includes the general principles of DelLeNoX
(bold) and the methods of the presented case study (italics).

most every major discussion of creativity such as “thinking
outside the box” (De Bono 1970), “paradigm shifts” (Kuhn
1962) etc. The idea requires that creativity is conceptual-
ized as some sort of search in a space of artifacts or ideas. In
Boden’s formulation, exploratory creativity refers to search
within a given search space, and transformational creativ-
ity refers to changing the rules that bind the search so that
other spaces can be searched. Exploratory creativity is often
associated with the kind of pedestrian problem solving that
ordinary people engage in every day, whereas transforma-
tional creativity is associated with major breakthroughs that
redefine the way we see problems.

Naturally, much effort has been devoted to thinking up
ways of modeling and implementing transformational cre-
ativity in a computational framework. Exploratory creativity
is often modeled “simply” as objective-driven search, e.g.
using constraint satisfaction techniques or evolutionary al-
gorithms (including interactive evolution).

We see the distinction between exploratory and transfor-
mative creativity as a matter quantitative rather than qualita-
tive. In some cases, exploratory creativity is indeed limited
by hard constraints that must be broken in order to transcend
into unexplored regions of search space (and thus achieve
transformational creativity). In other cases, exploratory cre-
ativity is instead limited by biases in the search process. A
painter might have a particular painting technique she de-
faults to, a writer a common set of plot devices he returns to,
and an inventor might be accustomed to analyze problems
in a particular order. This means that some artifacts are in
practice never found, even though finding them would not
break any constraints — those artifacts are contained within
the space delineated by the original constraints. Analo-
gously, any search algorithm will over-explore some regions
of search space and in practice never explore other areas be-
cause of particularities related to e.g. evaluation functions,
variation operators or representation (cf. the discussion of
search biases in machine learning (Mitchell 1997)). This
means that some artifacts are never found in practice, even
though the representation is capable of expressing them and
there exists a way in which they could in principle be found.

DeLeNoX and Transformed Exploration

As mentioned above, the case study of this paper is two-
dimensional spaceships. These are represented as images
generated by Compositional Pattern-Producing Networks
(CPPNs) with constraints on which shapes are viable space-
ships. Exploration is done through a version of novelty

search, which is a type of evolutionary algorithm that seeks
to explore a search space as thoroughly as possible rather
than maximizing an objective function. In order to do this,
it needs a measure of difference between individuals. The
distance measure inherently privileges some region of the
search space over others, in particular when searching at
the border of feasible search space. Additionally, CPPNs
with different topologies are likely to create specific pat-
terns in generated spaceships, with more complex CPPNs
typically creating more complex patterns. Therefore, in dif-
ferent stages of this evolutionary complexification process,
different regions of the search space will be under-explored.
Many artifacts that are expressible within the representation
will thus most likely not be found; in other words, there are
limitations to creativity because of search biases.

In order to alleviate this problem and achieve a fuller cov-
erage of space, we algorithmically characterize the biases
from the search process and the representation. This is what
the autoencoders do. These autoencoders are applied on a
set of spaceships resulting from an initial exploration of the
space. A trained autoencoder is a function from a complete
spaceship (phenotype) to a relatively low-dimensional array
of real values. We then use the output of this function to
compute a new distance measure, which differs from pre-
vious ones in that it better captures typical patterns at the
current representational power of the spaceship-generating
CPPNs. Changing the distance function amounts to chang-
ing the exploration process of novelty search, as novelty
search is now in effect searching along different dimensions
(see Fig. 1). We have thus fransformed exploratory creativ-
ity, not by changing or abandoning any constraints, but by
adjusting the search bias. This can be seen as analogous to
changing the painting technique of a painter, the analysis se-
quence of an inventor, or introducing new plot devices for a
writer. All of the spaceships that are found by the new search
process could in principle have been found by the previous
processes, but were very unlikely to be.

Schmidhuber’s theory of creativity

Schmidhuber (2006; 2007) advances an ambitious and in-
fluential theory of beauty, interestingness and creativity that
arguably holds explanatory power at least under certain cir-
cumstances. Though the theory is couched in computational
terms, it is meant to be applicable to humans and other an-
imals as well as artificial agents. In Schmidhuber’s theory,
a beautiful pattern for a curious agent A is one that can suc-
cessfully be compressed to much smaller description length
by that agent’s compression algorithm. However, perfect
beauty is not interesting; an agent gets bored by environ-
ments it can compress very well and cannot learn to com-
press better, and also by those it cannot compress at all. In-
teresting environments for A are those which A can com-
press to some extent but where there is potential to improve
the compression ratio, or in other words potential for A to
learn about this type of environment. This can be illustrated
by tastes in reading: beginning readers like to read linguis-
tically and thematically simple texts, but such texts are seen
by advanced readers as “predictable” (i.e. compressible),
and the curious advanced readers therefore seek out more



complex texts. In Schmidhuber’s framework, creative indi-
viduals such as artists and scientists are also seen as a curi-
ous agents: they seek to pose themselves problems that are
on the verge of what they can solve, learning as much as pos-
sible in the process. It is interesting to note the close links
between this idea and the theory of flow (Csikszentmihalyi
1996) but also theories of learning in children (Vygotsky et
al. 1987) and game-players (Koster and Wright 2004).

The DeLeNoX system fits very well into Schmidhuber’s
framework and can be seen as a novel implementation of
a creative agent. The system proceeds in phases of ex-
ploration, carried out by novelty search which searches for
interesting spaceships, and transformation, where autoen-
coders learn to compress the spaceships found in the previ-
ous exploration phase (see Fig. 1) into a lower-dimensional
representation. In the exploration phases, “interesting”
amounts to far away from existing solutions according to
the distance function defined by the autoencoder in the pre-
vious transformation phase. This corresponds to Schmidhu-
ber’s definition of interesting environments as those where
the agent can learn (improve its compression for the new en-
vironment); the more distant the spaceships are, the more
they force the autoencoder to change its compression algo-
rithm (the weights of the network) in the next transformation
phase. In the transformation phase, the learning in the au-
toencoder directly implements the improvement in capacity
to compress recent environments (‘“compression progress’)
envisioned in Schmidhuber’s theory.

There are two differences between our model and
Schmidhuber’s model of creativity, however. In Schmid-
huber’s model, the agent stores all observations indefinitely
and always retrains its compressor on the whole history of
previous observations. As DeLeNoX resets its archive of
created artifacts in every exploration phase, it is a rather for-
getful creator. A memory could be implemented by keeping
an archive of artifacts found by novelty search in all pre-
vious exploration phases, but this would incur a high and
constantly increasing computational cost. It could however
be argued that the dependence of each phase on the previous
represents an implicit, decaying memory. The other differ-
ence to Schmidhuber’s mechanism is that novelty search al-
ways looks for the solution/artifact that is most different to
those that have been found so far, rather than the one pre-
dicted to improve learning the most. Assuming that the au-
toencoder compresses relatively better the more diverse the
set of artifacts is, this difference vanishes; this assumption is
likely to be true at least in the current application domain.

A case study of DeL.eNoX:
Spaceship Generation

This paper presents a case study of DeLeNoX for the cre-
ation of spaceship sprites, where exploration is performed
via constrained novelty search which ensures a believable
appearance, while transformation is performed via a denois-
ing autoencoder which finds typical features in the space-
ships’ current representation (see Fig. 1). Search is per-
formed via neuroevolution of augmenting topologies, which
changes the representational power of the genotype and war-
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Figure 2: Fig 2a shows a sample CPPN using the full range
of pattern-producing activation functions available. Fig. 2b
shows the process of spaceship generation: the coordinates
0 to x,,,, normalized as 0 to 1 (respectively) are used as input
x of the CPPN. Two C' values are used for each z, resulting
in two points, top (t) and bottom (b) for each . CPPN input
x and output y are treated as the coordinates of ¢ and b; if ¢
has a higher y value than that of b then the column is empty,
else the hull extends between ¢ and b. The generated hull is
reflected vertically along x,,.

rants the transformation of features which bias the search.

Domain Representation

Spaceships are stored as two-dimensional sprites; the space-
ship’s hull is shown as black pixels. Each spaceship is
encoded by a Compositional Pattern-Producing Network
(CPPN), which is able to create complex patterns via func-
tion composition (Stanley 2006). A CPPN is ideal for vi-
sual representation as it can be queried with arbitrary spa-
tial granularity (infinite resolution); however, this study uses
a fixed resolution for simplicity. Unlike standard artificial
neural networks where all nodes have the same activation
function, each CPPN node may have a different, pattern-
producing function; six activation functions bound within
[0,1] are used in this study (see Fig. 2a). To generate a
spaceship, the sprite is divided into a number of equidistant
columns equal to the sprite’s width (W) in pixels. In each
column, two points are identified as top (¢) and bottom (b);
the spaceship extends from ¢ to b, while no hull exists if ¢ is
below b (see Fig. 2b). The y coordinate of the top and bottom
points is the output of the CPPN; its inputs are the point’s z
coordinate and a constant C' which differentiates between ¢
and b (with C = —0.5 and C' = 0.5, respectively). Only
half of the sprites’ columns, including the middle column
at x,, = [%W , are used to generate ¢ and b; the remaining
columns are derived by reflecting vertically along x,, .

A sufficiently expanded CPPN, as a superset of a multi-
layer perceptron, is theoretically capable of representing any
function. This means that any image could in principle be
produced by a CPPN. However, the interpretation of CPPN
output we use here means that images are severely limited to
those where each column contains at most one vertical black
bar. Additionally, the particularities of the NEAT complex-
ification process, of the activation functions used and of the
distance function which drives evolution make the system
heavily biased towards particular shapes. It is this latter bias
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Figure 3: The autoencoder architecture used for DeLeNoX,
consisting of the encoder where @ = f™(P) and the de-
coder where P’ = g™ (Q). The higher-level representation
in g1, qo, ..., qy is used to calculate the difference between
individuals for the purposes of novelty search.

that is characterized within the transformation phase.

Transformation Phase: Denoising Autoencoder

The core innovation of DelLeNoX is the integration of au-
toencoders (AEs) in the calculation of the novelty heuristic
(described in the next section), which is used to explore the
search space according to the current representational power
of the encoding CPPNs. AEs (Hinton and Zemel 1994) are
non-linear models that transform an input space P into a
new distributed representation ) by applying a determinis-
tic parametrized function called the encoder Q = fV(P).
This encoder, instantiated in this paper as a single layer of
logistic neurons, is trained alongside a decoder (see Fig. 3)
that maps back the transformed into the original represen-
tation (P’ = g% (Q)) with a small reconstruction error, i.e.
the original and corresponding decoded inputs are similar.
By using a lower number of neurons than inputs, the AE is a
method for the lossy compression of data; its most desirable
feature, for the purposes of DeLeNoX, is that the compres-
sion is achieved by exploiting typical patterns observed in
the training set. In order to increase the robustness of this
compression, we employ denoising autoencoders (DAs), an
AE variant that corrupts the inputs of the encoder during
training while enforcing that the original uncorrupted data is
reconstructed (Vincent et al. 2008). Forced to both maintain
most of the information from the input and undo the effect
of corruption, the DA must “capture the main variations in
the data, i.e. on the manifold” (Vincent et al. 2008), which
makes DAs far more powerful tools than linear models for
principal component analysis.

For the purposes of detecting the core visual features of
the generated spaceships, DeLeNoX uses DAs to transform
the spaceship’s sprite to a low-dimensional array of real val-
ues, which correspond to the output of the encoder. Since
spaceships are symmetrical along x,,, the training set con-
sists of the left half of every spaceship sprite (see Fig. 4d).
The encoder has H-[%"] inputs (P), which are assigned a
corrupted version of the spaceship’s half-sprite; corruption
is accomplished by randomly replacing pixels with 0, which
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Figure 4: Sample spaceships of 49 by 49 pixels, used for
demonstrating DeLeNoX. Fig. 4a is a feasible spaceship;
Fig. 4b and 4c are infeasible, as they have disconnected pix-
els and insufficient size respectively. The autoencoder is
trained to predict the left half of the spaceship in Fig. 4a
(Fig. 4d) from a corrupted version of it (Fig. 4e).

is the same as randomly removing pixels from the spaceship
(see Fig. 4e). The encoder has N neurons, corresponding to
the number of high-level features captured; each feature g;
is a function of the input P as sig(W;-P + b;) where sig(x)
the sigmoid function and {W;, b; } the feature’s learnable pa-
rameters (weight set and bias value, respectively). The out-
put P’ of the decoder is an estimation of the uncorrupted
half-sprite derived from Q = [q1,¢2,...,qn] via P’ =
sig(W'-Q + B’); in this paper the DA uses tied weights
and thus W’ is the transpose of W = [Wq, Wa, ..., Wy].
The parameters {W, B, B’} are trained via backpropagation
(Rumelhart 1995) according to the mean squared error be-
tween pixels in the uncorrupted half-sprite with those in the
reconstructed sprite.

Exploration Phase: Constrained Novelty Search

The spaceships generated by DeLLeNoX are expected to be
useful for a computer game; spaceships must have a believ-
able appearance and sufficient size to be visible. Specif-
ically, spaceships must not have disconnected pixels and
must occupy at least half of the sprite’s height and width; see
examples of infeasible spaceships in Fig. 4b and 4c. In or-
der to optimize feasible spaceships towards novelty, content
is evolved via a feasible-infeasible novelty search (FINS)
(Liapis, Yannakakis, and Togelius 2013). FINS follows the
paradigm of the feasible-infeasible two-population genetic
algorithm (Kimbrough et al. 2008) by maintaining two sep-
arate populations: a feasible population of individuals satis-
fying all constraints and an infeasible population of individ-
uals failing one or more constraints. Each population selects
individuals among its own members, but feasible offspring
of infeasible parents are transferred to the feasible popula-
tion and vice versa; this form of interbreeding increases the
diversity of both populations. In FINS, the feasible popu-
lation selects parents based on a novelty heuristic (p) while
the infeasible population selects parents based on their prox-
imity to the feasible border ( fi,, ), defined as:

1 w ,
fznf =1- g [max{O,l — QW} —|—max{071_ %} + é{]

where w and h is the width and height of the spaceship in
pixels; W and H is the width and height of the sprite in
pixels; A is the total number of black pixels on the image
and A, the number of pixels on all disconnected segments.



For the feasible population, the paradigm of novelty
search is followed in order to explore the full spectrum of
the CPPNs’ representational power. The fitness score p(i)
for a feasible individual ¢ amounts to its average difference
with the k closest feasible neighbors within the population
or in an archive of past novel individuals (Lehman and Stan-
ley 2011). In each generation, the [ highest-scoring feasible
individuals are inserted in an archive of novel individuals.
In DeLeNoX, the difference used to calculate p is the Eu-
clidean distance between the high-level features discovered
by the denoising autoencoder; thus p(4) is calculated as:

N

k
% Z Z [Qn(i) - qn(/lm)]2

n=1

where i, is the m-th-nearest neighbor of ¢ (in the popula-
tion or the archive of novel individuals); N is the number
of hidden nodes (features) of the autoencoder and g,,(¢) the
value of feature n for spaceship ¢. As with the training pro-
cess of the denoising autoencoder, the left half of spaceship ¢
is used as input to gy, (), although the input is not corrupted.

In both populations, evolution is carried out via neuroevo-
lution of augmenting topologies (Stanley and Miikkulainen
2002) using only mutation; an individual in the population
may be selected (via fitness-proportionate roulette wheel se-
lection) more than once for mutation. Mutation may add a
hidden node (5% chance), add a link (10% chance), change
the activation function of an existing node (5% chance) or
modify all links” weights by a small value.

Experimentation

DeLeNoX will be demonstrated with the iteratively trans-
formed exploration of spaceships on sprites of 49 by 49 pix-
els. The experiment consists of a series of iterations, with
each iteration divided into an exploration phase and a trans-
formation phase. The exploration phase uses constrained
novelty search to optimize a set of diverse spaceships, with
“diversity” evaluated according to the features of the previ-
ous iteration; the transformation phase uses the set of space-
ships optimized in the exploration phase to create new fea-
tures which are better able to exploit the regularities of the
current spaceship complexity. Each exploration phase cre-
ates a set of 1000 spaceships, which are generated from 100
independent runs of the FINS algorithm for 50 generations;
the 10 fittest feasible individuals of each run are inserted
into the set. Given the genetic operators used in the mu-
tation scheme, each exploration phase augments the CPPN
topology by roughly 5 nodes. While the first iteration starts
with an initial population consisting of CPPNs with no hid-
den nodes, subsequent iterations start with an initial popula-
tion of CPPNs of the same complexity as the final individ-
uals of the previous iteration. The total population of each
run is 200 individuals, and parameters of novelty search are
k = 20 and [ = 5. Each evolutionary run maintains its own
archive of novel individuals; no information regarding nov-
elty is shared from previous iterations or across runs. Forget-
ting past visited areas of the search space is likely to hinder
novelty search, but using a large archive of past individuals

comes with a huge computational burden; given that CPPN
topology augments in each iteration, it is less likely that pre-
vious novel individuals will be re-discovered, which makes
“forgetting” past breakthroughs an acceptable sacrifice.

Each transformation phase trains a denoising autoencoder
with a hidden layer of 64 nodes, thus creating 64 high-
level features. The weights and biases for these features
are trained in the 1000 spaceships created in the exploration
phase. Training runs for 1000 epochs, trying to accurately
predict the real half-sprite of the spaceship (see Fig. 4d) from
a corrupted version of it (see Fig. 4e); corruption occurs by
replacing any pixel with a white pixel (with 10% chance).

We observe the progress of DeLLeNoX for 6 iterations.
For the first iteration, the features driving the exploration
phase are trained on a set of 1000 spaceships created by ran-
domly initialized CPPNs with no hidden nodes; these space-
ships and features are identified as “initial”. The impact
of transformation is shown via a second experiment, where
spaceships evolve for 6 iterations using the initial set of fea-
tures trained from simple spaceships with no transformation
phases between iterations; this second experiment is named
“static” (contrary to the proposed “transforming” method).

The final spaceships generated in the exploration phase of
each iteration are shown in Fig. 5 for the transforming run
and in Fig. 6 for the static run. For the purposes of brevity,
the figures show six samples selected based on their diver-
sity (according to the features on which they were evolved);
Fig. 5 and 6 therefore not only showcase the artifacts gen-
erated by DeLeNoX, but the sampling method demonstrates
the shapes which are identified as “different” by the features.

In Fig. 5, the shifting representational power of CPPNss is
obvious: CPPNs with no hidden nodes tend to create pre-
dominantly V-shaped spaceships, while larger networks cre-
ate more curved shapes (such as in the 2nd iteration) and
eventually lead to jagged edges or “spikes” in later itera-
tions. While CPPNs can create more elaborate shapes with
larger topologies, Fig. 5 includes simple shapes even in late
iterations: such an example is the 6th iteration, where two of
the sample spaceships seem simple. This is likely due to the
lack of a “long-term memory”, since there is no persistent
archive of novel individuals across iterations.

In terms of detected features, Fig. 8 displays a random
sample of the 64 features trained in each transformation
phase of the transforming run; the static run uses the “ini-
tial” features (see Fig. 8a) in every iteration. The shape of
the spaceships directly affects the features’ appearance: for
instance, the simple V-shaped spaceships of the initial train-
ing set result in features which detect diagonal edges. The
features become increasingly more complex, and thus diffi-
cult to identify, in later iterations: while in the 1st iteration
straight edges are still prevalent, features in the Sth or 6th
iterations detect circular or vertical areas.

Comparing Fig. 6 with Fig. 5, we observe that despite
the larger CPPN topologies of later iterations, spaceships
evolved in the static run are much simpler than their respec-
tive ones in the transforming run. Exploration in the static
run is always driven by simple initial features (see Fig. 8a),
showing how the features used in the fitness function p bias
search. On the contrary, the transformation phase in each
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Figure 5: Sample spaceships among the results of each iter-
ation of exploration; such spaceships comprise the training
set for detecting the next iteration’s features (transforming
run). The best and worst spaceship in terms of difference
(using the previous iteration’s features) is included, along
with spaceships evenly distributed in terms of difference.

iteration counters this bias and re-aligns exploration towards
more visually diverse artifacts.

The diversity of spaceships and the quality of detected
features can be gleaned from Fig. 7, in which features
trained in different iterations of the transforming run gen-
erate distance metrics which evaluate the diversity of every
iteration’s training set, both for the transforming and for the
static run. Diversity is measured as the Euclidean distance
averaged from all spaceship pairs of the training set of an
iteration. In the transforming run, the highest diversity score
for a feature set is usually attained in the training set of the
following iteration (e.g. the initial features score the high-
est diversity in the 1st iteration’s spaceships). This is ex-
pected, since the features of the previous iteration are used
in the distance function driving novelty search in the next
iteration. This trend, however, does not hold in the last 3
iterations, possibly because patterns after the 3rd iteration
become too complex for 64 features to capture, while the
simpler patterns of earlier iterations are more in tune with
what they can detect. It is surprising that features of later
iterations, primarily those of the 3rd and 6th iteration, result
in high diversity values in most training sets, even those of
the static run which were driven by the much simpler initial
features. It appears that features trained in the more compli-
cated shapes of later iterations are more general — as they
can detect patterns they haven’t actually seen, such as those
in the static run — than features of the initial or 1st iteration
which primarily detect straight edges (see Fig. 8).

Discussion

This paper has presented DeLLeNoX as a system which trans-
forms exploration of the search space in order to counter
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Figure 6: Sample spaceships (sorted by difference) among
the results of each iteration of exploration driven by static
features trained on the initial spaceship set (static run).
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Figure 7: Diversity scores of the training sets at the end of
each iteration’s exploration phase, derived from the feature
sets trained in the transformation phases of the transforming
run. The training sets of the transforming run are evaluated
on the left figure, and those of the static run on the right.

the biases of the representation and the evolutionary pro-
cess. While short, the included case study demonstrates
the potential of DeLLeNoX in several distinct but comple-
mentary ways. The shifting representation of augmenting
CPPNs benefits from the iterative transformations of the
novelty heuristic which is used to evolve it, as demonstrated
by early features which detect straight lines versus later fea-
tures which focus on areas of interest. Using the early, sim-
ple features for evolving complex CPPNs is shown to hin-
der exploration since the representational bias which caused
those features to be prevalent has been countered by aug-
menting topologies. On the other hand, the iterative explo-
ration guided by features tailored to the representation cre-
ates a more diverse training set for the autoencoder, result-
ing in an overall improvement in the features detected as
shown by the increased diversity scores of later features on
the same data. This positive feedback loop, where the explo-
ration phase benefits from the transformation phase, which
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Figure 8: A sample of the 64 trained features at the end of each iteration. The visualization displays the weights of each pixel

of the input (i.e. the left half of the spaceship’s sprite). Weights are normalized to black (lowest) and white (highest).

in turn benefits from the improved divergent search of explo-
ration is the core argument for DeLeNoX. It should be noted,
however, that for this case study DeLeNoX is not without its
own biases, as the increasingly diverse training set eventu-
ally challenges the feature detector’s ability to capture typi-
cal patterns in the latest of presented iterations; suggestions
for countering such biases will be presented in this section.

The case study presented in this paper is an example of ex-
ploration via high-level features derived by compressing in-
formation based on their statistical dependencies. The num-
ber of features chosen was arguably arbitrary; it allows for a
decent compression (980 pixels to 64 real values) and mea-
suring the Euclidean distance for novelty search is computa-
tionally manageable. At the same time, it is large enough to
capture the most prevalent features among generated space-
ships, at least in the first iterations where spaceships and
their encoding CPPNs are simple. As exploration becomes
more thorough — enhanced both by the increased represen-
tational power of larger CPPNs and by more informed fea-
ture detectors — typical patterns become harder to find. It
could be argued that as exploration results in increasingly
more diverse content, the number of features should increase
to counter the fewer dependencies in the training set; for the
same reasons, the size of the training set should perhaps in-
crease. Future experiments should evaluate the impact of the
number of features and the size of the training set both on the
accuracy of the autoencoder and on the progress of novelty
search. Other experiments should explore the potential of
adjusting these values dynamically on a per-iteration basis;
adjustments can be made via a constant multiplier or accord-
ing to the quality of generated artifacts.

It should be pointed out that the presented case study
uses a single autoencoder, which is able to discover sim-
ple features such as edges. These simple features are easy to
present visually, and deriving the distance metric is straight-
forward based on the outputs of the autoencoder’s hidden
layer. For a simple testbed such as spaceship generation,
features discovered by the single autoencoder suffice — es-
pecially in early iterations of novelty search. However, the
true potential of DeLLeNoX will be shown via stacked au-
toencoders which allow for truly deep learning; the outputs
from the upper layers of such a deep belief network (Ben-
gio 2009) represent more “abstract” concepts than those of a
single autoencoder. Using such robust features for deriving
a novelty value is likely to address current limitations of the
feature extractor in images generated by complex CPPNss,

and can be applied to more complex problems.

The case study presented in this paper is ideal for demon-
strating DeLLeNoX due to the evolutionary complexification
of CPPNs; the indirect mapping between genotype and phe-
notype and the augmenting topologies both warrant the it-
erative transformation of the features which drive novelty
search. A direct or static mapping would likely find the iter-
ative transformation of the search process less useful, since
representational bias remains constant. However, any in-
direct mapping between genotype and phenotype including
neuroevolution, grammatical evolution or genetic program-
ming can be used for DeLeNoX.

Related Work

DeLeNoX is indirectly linked to the foci of a few studies
in automatic content generation and evolutionary art. The
creation of artifacts has been the primary focus of evolu-
tionary art; however, the autonomy of art generation is of-
ten challenged by the use of interactive evolution driven by
human preferences. In order to create closed systems, an
art appreciation component is used to automatically evalu-
ate generated artifacts. This artificial art critic (Machado et
al. 2003) is often an artificial neural network pre-trained
to simulate user ratings in a collection of generated con-
tent (Baluja, Pomerleau, and Jochem 1999) or between man-
made and generated images (Machado et al. 2007). Image
compression has also been used in the evaluation of gener-
ated artifacts (Machado et al. 2007). While DeLLeNoX es-
sentially uses an artificial neural network to learn features of
the training set, it does not simulate human aesthetic criteria
as its training is unsupervised; moreover, the learned fea-
tures are used to diversify the generated artifacts rather than
converge them towards a specific art style or aesthetic. This
same independence from human aesthetics, however, makes
evaluating results of DeLLeNoX difficult. Finally, while the
autoencoder compresses images to a much smaller size, this
compression is tailored to the particularities of the training
set, unlike the generic compression methods such as jpeg
used in NEvAr (Machado et al. 2007). Recent interest in dy-
namically extracting features targeting deviation from previ-
ously evolved content (Correia et al. 2013) has several sim-
ilarities to DeLeNoX; the former approach, however, does
not use novelty search (and thus exploration of the search
space is limited) while features are extracted via supervised
learning on a classification task between newly (and previ-
ously) generated artifacts and man-made art pieces.



The potential of DeLeNoX is demonstrated using the gen-
eration of spaceship sprites as a testbed. Spaceship gener-
ation is representative of the larger problem of automatic
game content creation which has recently received consid-
erable academic interest (Yannakakis 2012). Search-based
techniques such as genetic algorithms are popular for op-
timizing many different properties of game content; for a
full survey see (Togelius et al. 2011). Procedurally gener-
ated spaceships have been optimized, via neuroevolution, for
performance measures such as speed (Liapis, Yannakakis,
and Togelius 2011a) or for predefined aesthetic measures
such as symmetry (Liapis, Yannakakis, and Togelius 2012;
2011b). Similarly to the method described in this paper,
these early attempts use CPPN-NEAT to generate a space-
ship’s hull. This paper, however, describes a spaceship via
top and bottom points and uses a sprite-based representation,
both of which are more likely to generate feasible content;
additionally, the spaceship’s thrusters and weapons are not
considered.
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