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Abstract

Learning pixel representations of games can benefit artificial intelligence across sev-
eral downstream tasks including game-playing agents, procedural content generation,
and player modeling. However, the generalizability of these methods remains a chal-
lenge, as learned representations should ideally be shared across games with similar game
mechanics. This could allow, for instance, game-playing agents trained on one game to
perform well in similar games with no re-training. This paper explores how generaliz-
able pre-trained computer vision encoders can be used for such tasks by decomposing
the latent space into content and style embeddings. The goal is to minimize the domain
gap between games of the same genre when it comes to game content and ignore dif-
ferences in graphical style. We employ a pre-trained Vision Transformer encoder and a
decomposition technique based on game genres to obtain separate content and style em-
beddings. Our findings show that the decomposed embeddings achieve style invariance
across multiple games while still maintaining strong content extraction capabilities. We
argue that the proposed decomposition of content and style offers better generalization
across game environments independently of the downstream task.

1 Introduction

Video game engines maintain an internal data representation of the game world capturing all
necessary underlying variables describing the entities and objects existing within the virtual
world [13, 18] such as the position of the player and the location of the opponent. When this
data representation is fed through the renderer for generating the output image shown to the
player it incorporates the visual styling of the game—defined in terms of textures and colors
[21]. As a result, the visual style and the game content, represented as the internal game

state, get entangled [34] onto a high dimensional space (i.e. the RGB pixels).
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Figure 1: The proposed framework uses multiple games from the same genre to transform
latent representations to two lower-dimensional embeddings: one for content and one for
style. The t-SNE plot visualizes the domain gap in the latent representations and shows how
these differences are flattened into a separate style subspace which filters out the style gap.

When artificial intelligence (Al) methods are applied to games [33], such internal data
representations (e.g. the player’s position) can be extracted directly from variables within
the game engine [2, 15, 16, 22]. However, access to the game engine is a rarity; this severely
limits the number of games—especially commercial-standard ones—available for game Al
research. Pre-trained (and fine-tuned) computer vision models employed for extracting la-
tent representations from game pixels are not generalizable and suffer from what is known as
the domain gap problem [30] (see Fig. 1). Graphical styling differences in games—arising
from varying color palettes and abstract object designs—may cause a shift in the underlying
distributions of latent representations as extracted from pre-trained models [24]. Motivated
by the lack of generic approaches that identify critical game state information (i.e. game
content) solely from game frames, this paper introduces a method that processes the RGB
pixels of the game footage and disentangles the game content from the game’s style with-
out relying on the game engine [25]. The introduced method learns to decompose content
and style in a generalizable zero-shot manner [31] for any game, thereby eliminating the
technical challenges [11] associated with fine-tuning neural network models.

We propose a latent decomposition technique on the latent space of a pre-trained Vision
Transformer [4] model, trained on the Imagenet dataset [20] using the DINO self-supervised
learning method [3]. We show that it is possible to recover style and content embeddings
from this latent space extracted from the game pixels without further training. Our primary
contribution involves using a simple statistical method (i.e. singular value decomposition) to
find latent directions [5, 17, 27] that are unique across different games of the same genre, and
define them as style, while the remaining latent directions that are shared across these games
are defined as content. To validate our hypothesis, we test our method on two datasets. The
Genl1 dataset introduced here contains 110k images from 11 game genres and 193 games
that vary in style. The 3D-SSL dataset [26] contains game frames and corresponding internal
game state information (e.g. player position) from 3 games of 3 difference genres. We con-
duct linear probing tasks [1] on the derived content and style embeddings to recover relevant
game state information (i.e. content) and graphical style of the game (e.g. retro, modern,
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photorealistic). Our findings suggest that by using the introduced method we can recover
information that exhibits style-invariance while maintaining efficient content extraction ca-
pacities in a generalizable fashion across game genres.

2 Background

Only a few indicative papers focus on generalized representation learning within the domain
of video games. Trivedi ef al. [26] provide preliminary results on learning game state rep-
resentations with self-supervised learning (SSL) methods. They show that SSL models are
superior to pre-trained ImageNet models for 3D games. In [24] Trivedi et al. train general-
izable game models on 100k images across 175 games (10 game genres) and their findings
suggest that contrastive learning is better for learning game representations compared to con-
ventional supervised learning. Lee et al. [12] propose multi-game decision transformers able
to generalize across different Atari games after training on data from several such games.

The application of self-attention [28] to computer vision has enabled many advancements
that derive from the inductive biases [32] of the model architecture [4]. Caron et al. [3] ob-
serve that Vision Transformers, when paired with SSL methods, generalise better compared
to convolutional networks. They note that via self-attention their ViT architecture can pre-
serve spatial information in the images when compressing dimensionality for representation
learning. Khan et al. [8] build upon this finding and showcase that such pre-trained encoders
are sufficient as backbone models to deploy in games. Their study, however, only supports
that pre-trained models are sufficient for training agents on a particular game without explor-
ing whether those agents can also be transferred to other games in a zero-shot manner.

Computer vision studies that investigate image style and content disentanglement [7, 10]
are largely focused on the image style transfer paradigm [6]. When it comes to games,
style and content separation is possible [23]. Kim et al. [9] proposed to learn style and
content representations in a car driving simulator, defining content as spatial information
and everything else as style. This style-content disentanglement [14] cannot be applied to
multiple games (even of the same genre) as we must cater for the game-specific differences
in design choices and graphical fidelity of physical objects, especially those belonging to
different game generations (e.g. low-bit retro games versus highly detailed modern games).

In contrast to all aforementioned studies, this paper aims to minimize the domain gap
across games of the same genre. For that purpose, we propose a novel decomposition tech-
nique on the latent representations of pre-trained encoder models by projecting them onto
separate content and style subspaces. The method appears to be generic across different
game genres, provided sufficient and representative data samples of game images.

3 Style-Content Decomposition: Definitions

Kim et al. [9] define style as information that does not depend on pixel location and content
as information that does. Within the car driving simulator used in their study, an example of
style information would be weather condition while that of content would be placement of
objects in the rendered image of the scene. Inspired by these definitions, we refer to style as
the aesthetic design choice which influences visuals of the game, but has no bearing on the
elements of the game world related to gameplay dynamics. Content instead can be viewed
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as elements of the game that influence the game-state existing within the predefined rules of
the game world. These rules are often shared across games belonging to the same genre.

In contrast to [9], we work on multiple games from multiple genres and thus must for-
malize what core elements of gameplay should be considered for all these games. For this,
we follow the causal dependency framework introduced by Trivedi ef al. [24] that utilizes
the broader accepted notion of “game genres” to create a separation between what counts
as game content and what gets interpreted as style. Under this framework, the game genre
(e.g. shooter genre versus car racing genre) only causes the content of the game to change,
but not vice-versa. We hypothesize that a game may have an idiosyncratic visual style (e.g.
skybox or wall textures). The content, however, is specified by conventions of the game
genre: e.g. the types of game elements (ball, net), their visual representations (shape of a
sniper rifle), their interactions (a soccer player may possess a ball by keeping it close), etc.
In essence, our causal framework works under the assumption that different games from the
same genre share the same content space but not necessarily the same style. An alternative
way of looking at the differences between content and style within a game genre is their
degree of subjectivity: the art style of a game can be viewed primarily as a subjective notion
whereas content can be defined objectively.

Based on our definition of style and content, we highlight the challenge of using pre-
trained computer vision models for processing game pixels. We define domain gap based on
the framework defined earlier and quantify it as the influence of style in learning represen-
tations of different games belonging to the same genre. We therefore measure the domain
gap in this paper based on the clustering quality metric silhouette score [19, 24], ranging
between —1 and +1, which quantifies how clustered the representations of graphically dif-
ferent games of the same genre are in the embedding space. The higher the silhouette score,
the larger the gap between clusters of representations of different games. When capturing
content information that is assumed to share same information across graphically different
games, we want this silhouette metric to be low: values close to 0 indicate no clear clusters.
At the same time, the style information across different games should ideally exhibit high
silhouette score values: values close to 1 indicate very well separated clusters.

Our hypothesis is that different games belonging to the same genre have the same content.
This would mean that the latent representation of images of different games from the same
genre would contain similar content. This would decrease the variance in the representations
across games, and we can leverage this to disentangle style and content information from
within the latent space of a pre-trained encoder.

4 Methodology

Figure 1 illustrates our overall methodology. We employ a pre-trained vision encoder on the
images to obtain a latent representation for each frame. Once the game footage frames from
a number of different games (of the same genre) are encoded, they display a certain degree of
domain gap expressed through the silhouette score of the latent embedding (as in [26]). The
latent representation is then decomposed into content and style via the use of the Singular
Value Decomposition (SVD) method.


Citation
Citation
{Kim, Philion, Torralba, and Fidler} 2021

Citation
Citation
{Trivedi, Liapis, and Yannakakis} 2021

Citation
Citation
{Rousseeuw} 1987

Citation
Citation
{Trivedi, Liapis, and Yannakakis} 2021

Citation
Citation
{Trivedi, Makantasis, Liapis, and Yannakakis} 2022{}


TRIVEDI ET AL.: TOWARDS GENERAL GAME REPRESENTATIONS 5

Car Racing First Person Shooter Soccer
Need for Speed 2 (1997) Wolfenstein (1992) World Cup (1998)

_Modern

_Photoreal

Figure 2: Visualizing the Spatial Attention Maps of DINO ViT-Base [3] across different
game genres and graphical styles. The maps highlight the capability of self-attention layers
[4] to extract content (e.g. car, enemy or player positions) while being invariant to the differ-
ent game styles. The styles of retro, modern and photorealistic are shown in this example.

4.1 Computer Vision Encoder

For all experiments, we use a pre-trained Vision Transformer (ViT) [4] to extract latent repre-
sentations of the game images. We use the ViT base encoder (~ 85M parameters) with patch
size 8 and pre-trained on ImageNet dataset [20] employing the self-supervised DINO loss
[3]. Fig. 2 presents the spatial self-attention maps used by the ViT architecture for 9 indica-
tive games of our dataset. In particular, we obtain the attention activations from multi-head
attention of the last transformer block, and average them across all attention heads [3]. This
yields a 28x28 attention map, which we flatten into an attention representation of dimension
784. The attention maps depicted in Fig. 2 showcase the capability of self-attention layers to
highlight a game’s content while being invariant to the various graphical game styles.

4.2 Decomposing Game Content and Style via SVD

As mentioned earlier, the styles of different games belonging to the same genre can be sub-
stantially different. In contrast, their content—given that it reflects the game state—should
not exhibit highly different patterns. Therefore, we hypothesize that the latent image repre-
sentation factors that exhibit high variation across data points are associated with the game
style, while those that do not significantly vary are associated with game content. To validate
this hypothesis, we first identify those directions in the latent representation space that cap-
ture the most variation in the data and use them as a feature representation of game style; we
call these direction style components. Then, we use the rest of the directions for representing
content, which we call content components.

For that purpose, we use the SVD method [29]. Given a design matrix X € RV*? repre-
senting a dataset consisting of NV observations described by P features, SVD will compute the
decomposition X = USVT, where U is a unitary matrix, § is a diagonal matrix of singular
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Table 1: Summary of the video game datasets used in this study.
Dataset Name \ \ Genl1 \3D—SSL

Football, Basketball, Bike Racing, Car Racing (CARLA),
Game Genres ||Car Racing, Fighting, FPS, Hockey, FPS (VizDoom),
Soccer, Table Tennis, Tennis, Volleyball|Soccer (GRFE)

Total Games /193 3

Total Images (/110,000 40,608

Labels Graphics Styling Internal Game State (Positions of Player,
(Retro, Modern, Photoreal) Opponents and other Game Objects)

Usage Latent Decomposition, Style Prediction | Content Extraction

values, and each of the columns of matrix V is associated with a singular value. The vari-
ance in the data that a column of V' can explain is proportional to the square of its associated
singular value. Based on that property, we can use the k columns of V' associated with the
k largest singular values to encode style and the remaining columns to encode content. The
parameter k is selected empirically so that it maximizes the domain gap difference in games.

4.3 Datasets

Our proposed framework requires a specific dataset structure, where it is possible to cate-
gorize a game under a single game genre. For this purpose, we select the Sports10 dataset
introduced by Trivedi er al. [24], which contains gameplay images from 175 games across
10 sports game genres. In addition to Sports10 data, we consider data from the first-person
shooter (FPS) genre, with 10,000 images of 18 different FPS games in different graphic
styles. The combined Genll dataset (as we name it here) contains 193 games across 11
game genres in total. In terms of graphical styling, it contains 58 games labeled as “retro”,
90 as “modern” and 45 as “photorealistic”. The properties of Genl1 data are provided in
Table 1. We use this dataset for two purposes: (a) to quantify the domain gap across 11
different game genres and to learn a projection matrix for latent decomposition (see Section
3); (b) to assess our style embeddings using the three style labels (see Section 5.3).

In addition to Gen11, we use the 3D-SSL dataset [26] for evaluating content embeddings.
This dataset contains paired images and game states obtained for three games by interfacing
with the game engine to extract exact variables that describe the state of a game at any given
instance. The properties of this dataset are also outlined in Table 1.

5 Results

This Section presents the decomposition analysis of the game genres considered (Section
5.1), and assesses the quality of content embeddings (Section 5.2) and style embeddings
(Section 5.3) on simple linear probing tasks.

5.1 Decomposing Latent into Content and Style

To assess the decomposition method introduced in this paper, we apply SVD on the attention
representation (D = 768) of each game genre (10k images) in the Genl11 dataset (see Section
4.3). The highest 256 singular values (out of 768) are shown in Fig. 3. We observe that
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Descending order of singular values from SVD Optimal threshold selection for latent decomposition
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Figure 3: Top 256 singular values of SVD Figure 4: Domain gap difference across dif-

across all 768 dimensions of latent repre- ferent k thresholds per genre in the Genll
sentation per genre in the Genl1 dataset. dataset.

most of the variance in the representations of different games within a genre comes from
very few dimensions of the latent; this cut-off point (threshold k) is highlighted using the
vertical dashed line (k = 16). The “flat” nature of this graph past the dashed line indicates
that most information in the latent representations remains consistent across games despite
having different graphical styling in its input. An encoder that is not robust to such variations
would have a more gradual “decline” for the SVD values.

In order to assess the optimal value for the cut-off k, we use domain gap difference as a
metric that consists of the silhouette score of the style embeddings (i.e. the k latent variables
with the highest SVD score) minus the silhouette score of the content embeddings (i.e. the
lowest D — k latent variables according to the SVD score). Figure 4 shows this domain gap
difference across different k thresholds. The optimal value for 9 out of 11 game genres is
k = 16, with slightly higher domain gap differences at k = 32 for Football and Hockey genre.
We select k = 16 as a general cutoff point across all game genres for consistency, yielding
style embeddings of 16 dimensions and content embeddings of 752 dimensions.

In order to verify whether the embeddings derived above capture the notions of game
style and game content, we run a linear probing analysis on both derived embeddings to
predict elements of style versus features of content as detailed below.

5.2 Evaluating Content Embeddings

We follow the linear probing protocol introduced in [1] and run simple linear regression on
game-state variables [26]. Indicative game-state variables for the three games of the 3D-SSL
dataset [26] include the position of the players and the ball (94 variables for GRFE), the
position of enemies (12 variables for VizDoom) and the position of the car and nearby traffic
(7 variables for CARLA). We test four embeddings: (a) the latent representation of the pre-
trained ViT, which represents the upper bound in terms of game state prediction potential for
this experiment; (b) the latent representation of a randomly initialized ViT (RandViT) as a
baseline to assess the impact of the training process; (c) the attention map of the pre-trained
ViT, to assess whether features that only contain spatial information suffice for this task; (d)
the content embeddings (dim=752) derived from our method. The performance of the linear
probe is based on the coefficient of determination (R? score) of this model, averaged across
all game state variables.
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Majority class (baseline) =¥ Latent Style
Car Racing
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[ Latent Representation [dim=768] [ Content Embedding [dim=752] Fighting
[ Attention Map [dim=784] I RandViT Latent (baseline) [dim=768]

GRFE FPS
(Soccer)

(FPS) Hockey
CARLA
(Racing)

|
0.0 0.2 0.4 0.6 0.8 1.0
Average R? Table Tennis

Basketball

American
Football

Volleyball

Tennis

Figure 5: Linear probing results, measured as R> Figure 6: Test accuracy classifying a
score averaged across all game state variables of ~ game’s style (retro, modern, photoreal-
the 3D-SSL dataset [26]. Results are averaged istic) in the Genl11 dataset. Data is av-
across all engine parameters of each game (94 eraged from 10 cross-validation folds.
for GRFE, 12 for VizDoom, 7 for CARLA).

Table 2: Domain gap (as silhouette score) for different embeddings and game genres in the
Genl1 dataset. Lower values indicate smaller domain gap.

o0 Z
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= - ) o = > = 195 = = >

RandViT | 0.147 | 0.201 | 0.093 |-0.137 | 0.047 |-0.144| 0.030 | 0.353 | 0.317 | 0.626 | 0.167
Latent 0.138 | 0.290 | 0.236 | 0.161 | 0.218 | 0.104 | 0.140 | 0.213 | 0.340 | 0.441 | 0.276
Attention | -0.015 [-0.012| 0.021 | 0.056 |-0.010 | 0.026 |-0.096 |-0.032| 0.073 | 0.022 | -0.007
Content |-0.010|-0.091 |-0.048 |-0.032 |-0.153 | -0.059 |-0.030 | -0.050 | -0.133 | -0.142 | -0.199
Style 0.240 | 0.517 | 0.495 | 0.382 | 0.396 | 0.261 | 0.219 | 0.348 | 0.523 | 0.677 | 0.488

Figure 5 presents the key results of this experiment. As expected, the full latent rep-
resentation of the pre-trained ViT reaches the highest R> scores. Moreover, the randomly
initialized ViT performs poorly, with a relative decrease of 24%, 23% and 2.5% for GRFE,
VizDoom, CARLA respectively. Evidently the CARLA dataset is fairly easy to predict,
as even untrained models can perform relatively well. The attention layer underperforms as
well, with a relative decrease of 19%, 30%, 0.8% for GRFE, VizDoom, CARLA respectively.
While attention is good at detecting objects on the screen, it seems unable to distinguish be-
tween different object types which would require additional visual information. Finally, it
is evident that content embeddings contain most of the information needed for these tasks,
reaching R? scores very close to the upper bound (relative decrease from the full latent rep-
resentation by 0.46%, 0.43% and 0.23% for GRFE, VizDoom, CARLA respectively).

Table 2 shows the silhouette scores for different embeddings per game genre in the Genl11
dataset. We note that content has low silhouette scores, i.e. exhibits a low domain gap
between games of the same genre, lower than the full latent vector and (evidently) the style
embeddings. Based on Fig. 5, these same content embeddings can predict critical game state
information as well as the full latent vector. These two facts indicate that content embeddings
do not exhibit differences based on the visuals of games within the same genre (of the Genl11
dataset) while also matching game engine parameters in games of the 3D-SSL dataset.
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5.3 Evaluating Style Embeddings

In this section we test the capacity of the derived style embeddings to recover descriptive
information about a game’s graphic style in terms of three style labels: retro, modern and
photorealistic graphics. We use a similar linear probing technique as in Section 5.2, but this
time we learn to predict the graphics style class as a single-output classification task. The
ground truth is in the manually ascribed style labels of the Genl1 dataset, which is used to
train the classifier. We use a leave-three-games-out cross-validation scheme, with frames
from three games of the same genre (one per style label) removed from training but used
for testing. The Genl1 dataset is split as above randomly over 10 folds per genre, averaged
and shown in Fig. 6. A majority vote classifier acts as a baseline, and is calculated on the
training set in every fold.

For all 11 game genres in the Genl11 dataset, we notice that style embeddings are able to
capture graphical styling information with higher accuracy than the baseline, with test accu-
racies as high as 72% (for the car racing genre). For comparison, we also test the capacity
of the latent representations as input to this linear classifier. Despite the latent represen-
tations integrating style information, its classification accuracy is not able to reach that of
the style embeddings; with fewer features (16), classification is easier for style embeddings
than the full latent representation (768). The style prediction results highlighted in Fig. 6,
combined with results in Table 2 showing higher silhouette scores for visual embeddings
(i.e. spread out clusters even if the games all belong to the same genre), collectively pro-
vide strong evidence that the derived style embeddings are meaningful representations and
efficient predictors of style across all game genres examined.

6 Discussion and Conclusion

Our findings provide evidence that only a few features of the latent representation of a pre-
trained Visual Transformer account for the style of a game, with remaining ones accounting
for content information that can be re-used across other games in the same genre. By testing
both style embeddings and content embeddings in fairly simple tasks (predicting graphical
style and in-game variables respectively), we offer evidence that the split is a viable way for-
ward for more complex downstream tasks. The clustering quality analysis also emphasizes
the effectiveness of these embeddings in reducing the domain gap across different games of
the same genre. Based on the experiments performed in this paper we can argue that the
introduced method yields more generalizable and reusable game models, both for pixels to
latent embeddings and for latent embeddings to pixels. We hope that the paper will spur
further research in downstream applications with zero-shot transferability across games. Ul-
timately, how to best use the disentangled content and style embeddings for improving gen-
eralizability will vary according to the downstream task. Beyond the simple classifiers tested
in this paper, in future studies we plan to test the the derived embeddings for a number of
downstream tasks, including game-playing agents, player modeling and content generation.
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