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Abstract. Domain randomisation enhances the transferability of vision
models across visually distinct domains with similar content. However,
current methods heavily depend on intricate simulation engines, hamper-
ing feasibility and scalability. This paper introduces BehAVE3, a video
understanding framework that utilises existing commercial video games
for domain randomisation without accessing their simulation engines.
BehAVE taps into the visual diversity of video games for randomisation
and uses textual descriptions of player actions to align videos with sim-
ilar content. We evaluate BehAVE across 25 first-person shooter (FPS)
games using various video and text foundation models, demonstrating its
robustness in domain randomisation. BehAVE effectively aligns player
behavioural patterns and achieves zero-shot transfer to multiple unseen
FPS games when trained on just one game. In a more challenging sce-
nario, BehAVE enhances the zero-shot transferability of foundation mod-
els to unseen FPS games, even when trained on a game of a different
genre, with improvements of up to 22%. BehAVE is available online4.

1 Introduction

Video game engines uphold an internal representation of the game environ-
ment [12, 17], encompassing essential variables such as player position and map
layout. Upon undergoing processing by the game graphics renderer, this data
becomes intricately entwined with the game’s visual style, resulting in the im-
ages presented to the player on screen. Securing access to game engine data,
however, proves challenging, if not impossible in practice, particularly for com-
mercial video games. Consequently, this circumstance directs the trajectory of
game artificial intelligence (AI) research towards the utilisation of more accessi-
ble game representations such as pixels [14, 39]. Unfortunately even with state
of the art pre-trained computer vision (CV) models the resulting game pixel
encodings do not generalise well, even between games of the same genre, and
suffer from what is known as the domain gap problem [35] (see Fig. 1a).
⋆ Equal contribution
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(a) Foundation Encodings (b) BehAVE Encodings

Fig. 1: High level overview of the BehAVE framework. The t-SNE plots show encod-
ings of short video sequences from 5 distinct FPS games: (a) indicates the domain gap
between encodings of different games from a video foundation model, while (b) shows
encodings aligned by BehAVE. The framework positions similar player behaviour en-
codings (e.g., aim gun) closely across visually diverse games like PUBG (left) and Apex
Legends (right).

Improving model generalisation stands as a pivotal problem within machine
learning (ML) research, encompassing various research topics such as domain
adaptation, meta-learning, and transfer learning. Domain generalisation [33] has
emerged as a focal point of interest aiming to develop models capable of ef-
fectively generalising across unseen testing domains by leveraging training data
from diverse but related domains. One highly promising technique for enhanc-
ing the transferability of CV models in games is domain randomisation [28],
a simple technique that improves the robustness of a CV model by training
it on visuals derived from randomising rendering parameters of a simulator en-
gine. Building accurate large-scale simulators, however, is a formidable challenge
which requires significant time, expertise, and effort [6]. Identifying and ran-
domising relevant simulation parameters adds further to the complexity, making
the entire process a resource-intensive endeavour. Additionally the randomisa-
tion process can occasionally lead to inaccurate and infeasible results.

To address the above mentioned issues, in this paper we introduce a novel
approach to domain randomisation that leverages the rich visual diversity in-
herent in video games; see Fig. 1. Specifically our framework distinguishes
itself by not relying on game engine access for the randomisation process. This
unlocks the potential of CV to be trained and tested on videos from commercial-
grade video game titles, a capability that has, until now, remained elusive. Our
Behaviour Alignment of Video Game Encodings (BehAVE) framework har-
nesses the unique characteristic of gameplay videos opposed to any other videos
available. Gameplay video footage is generated by sequential player actions (i.e.,
controller inputs) that control on-screen animations characterised as player be-
haviour. Using player actions, BehAVE is able to align video encodings of sim-
ilar player behaviours across visually diverse games (i.e., different domains).
Crucially, it employs semantic action encoding, a method that infuses semantic
information about behaviour through textual descriptions of actions, which are
encoded using pre-trained text encoders [15]. As a result, the text encodings of
player actions guide the behavioural alignment of video encodings.
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We train BehAVE’s alignment module, implemented on top of foundation
video encoders [30], across a diverse array of games from the first person shooter
(FPS) game genre, namely our introduced SMG-25 dataset. Our findings suggest
that BehAVE is able to uncover similar behavioural patterns—despite visual
distinctions, such as variations in game style or aesthetics—across unseen games
of the SMG-25 dataset (see Figure 1 for an illustrative example). The alignment
training proves efficient even with small datasets comprising only a few games,
and it demonstrates robustness across various tested video and text encoders.

To assess the transferability of BehAVE we test it on a video understand-
ing task across various FPS games, while solely being trained on the FPS game
Counter Strike: GO (Valve, 2012). Further, we test a more challenging scenario
evaluating the transfer performance to the FPS genre from Minecraft (Mojang,
2011) a first person game from a different genre (non-FPS). Our findings indi-
cate higher transferability when learning to classify behaviour from our aligned
representation space as compared to without, showcasing up to 22% higher clas-
sification accuracies across the different behaviour categories tested. We view
this as a potential avenue for annotating extensive datasets of online gameplay
videos with behaviour labels, thereby serving as a stepping stone towards learn-
ing generalised representations of behaviour in videos. Our contributions can
be summarised as follows: (1) We introduce the BehAVE framework for do-
main randomisation via commercial video games; (2) We propose Semantic
Action Encoding for representing player actions as textual descriptions pro-
cessed through a pretrained text encoder; (3) We introduce the SMG-25 dataset
of synchronised gameplay and actions.

2 Background

Video Understanding in CV. Video understanding methods seek to interpret
visual information embedded within temporal image-sequences. Recent strides in
deep learning have led to attaining remarkable performance in diverse video un-
derstanding tasks, including but not limited to video classification [4], video sum-
marisation [1], short and long-form video understanding [38], and object track-
ing [44]. Current endeavours focus on training strategies that are independent
of any specific downstream task. The resulting video foundation models [34, 36]
yield powerful video representations, readily applicable across a diverse range
of tasks. We use such foundation models in our study courtesy of their out-of-
the-box performance and employ them as is (i.e. frozen) bounded by limited
computational resources [29]. This underscores the computational efficiency of
our video understanding framework, ultimately enhancing its accessibility.

Transferable CV and Domain Randomisation. Despite their impres-
sive out-of-the-box performance, foundation models showcase limited capacities
on transferring knowledge from one domain to another visually distinct domain,
primarily due to the “domain gap” challenge [31,32]. Tobin et al. [28] introduced
the technique of domain randomisation to train transferable vision models by
injecting variability during learning. This is achieved by randomising the ren-
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dering of a simulator that generates training data. Leiprecht [11] showcases the
efficacy of domain randomisation in CARLA [6], a large-scale driving simulator.
Mishra et al. [13], however, bring to light the numerous complexities associated
with identifying and tweaking relevant parameters of such simulators. Further-
more, Kim et al., [8] emphasise the limited variability that can be attained from
a single simulator, impacting the transfer capacity [42]. Hence, in this work, we
adopt a simulator-free approach for visual domain randomisation.

Video Games for CV. Inspired by insights from [23] and [20] suggesting
that procedurally generated sets of diverse games enhance generality in machine
learning, we explore the use of existing video games in CV. Several recent studies
investigate the use of commercial-standard games as an alternative to dedicated
in-lab simulators or procedural game level generation approaches, in an attempt
to circumvent limitations related to inaccessible game engines. Notably, Grand
Theft Auto 5 (Rockstar, 2013) serves as a popular video game for collecting anno-
tated data, achieved by intercepting rendering communication between graphics
hardware and the screen buffer [10,22,27] or employing a game modification such
as “infrared vision mod” [7]. Alternatively, Pearce and Zhu [16] gather internal
game state information from CS:GO by probing the machine’s memory. In con-
trast to such prior works involving the “reverse-engineering” of game engines,
our approach captures high-level game information such as player actions using
raw inputs from the machine’s I/O devices, thereby simplifying the collection of
annotated gameplay and boosting the scalability of our method across numerous
commercial video games.

Multimodal Alignment of CV Models. Given that BehAVE consid-
ers different modalities of input such as videos of gameplay and corresponding
player actions, we draw inspiration from contemporary work in video action
recognition [43]. In their work with a paired video-text caption dataset, Song et
al. [26] extract verbs from captions and use them as action labels. Our frame-
work builds on similar principles utilising language models [15], but instead,
encodes player actions; BehAVE then uses these action encodings for alignment
with another modality, namely gameplay videos. To achieve this, we rely on
multimodal alignment frameworks that operate with and align vision and lan-
guage such as CLIP [18] and VideoCLIP [9,40]. Drawing upon insights from the
aforementioned studies, we propose a novel method for performing visual do-
main randomisation with commercial games by aligning gameplay videos with
semantically represented player actions.

3 The BehAVE Framework

As introduced earlier, we present BehAVE, a framework operating on paired
visuals-and-actions datasets derived from commercial games, with the aim of
aligning video encodings based on similar player behaviour. The BehAVE method
is presented in Algorithm 1 and visually depicted in Figure 2a. In Section 3.1, we
explain the special structured dataset of games imperative for our framework,
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Algorithm 1 Behaviour-Alignment Training with BehAVE
1: Inputs: Games Dataset D, semantic action mapper m, pre-trained text encoder h,

pre-trained video encoder f and trainable alignment projector p.
2: for (video V, actions A) in D do
3: Compute video encoding zvideo = f(V )
4: Compute action encoding zcaption = h(m(A))
5: Project to aligned encoding zalign = p(zvideo)
6: Calculate loss Lcos = 1− cosine(zalign, zcaption)
7: Update projector network parameters pθ
8: end for
9: Output: Trained alignment projector p.

followed by Section 3.2 covering the encoder models used for both modalities.
Finally, Section 3.3 details the training method employed.

3.1 Games Dataset for Training BehAVE

A crucial component of our domain randomisation framework involves the metic-
ulous preparation of a dataset adhering to a specific structure that accommodates
semantically similar visual content represented across diverse visual styles. We
enforce this structure via the selection criteria of the various commercial games
in the training dataset. Note that since BehAVE is trained upon player-game
interaction data, we do not require access to the game engines, making it a viable
strategy to use commercial games.

Game Selection for Domain Randomisation. Let G represent a game,
with a frame-renderer g, and G ∈ C, where C denotes the family of games of a cer-
tain game genre category. Given that domain randomisation with customisable
simulators involves the adjustment of simulator render parameters, we proceed
to identify and formally define comparable parameters ξ within the context of
video games. Each game’s renderer encompasses certain game-specific parame-
ters denoted as “game style parameters” (ξG), associated with either the visual
aesthetics of the game, such as textures and colours of objects, or the underlying
rules governing the game, such as game physics. These parameters are consid-
ered invariant throughout the game, reflecting game design choices made during
development, and are less likely to be shared across all games of this genre cat-
egory. In the context of our analysis involving multiple commercial games, we
observe ξG ∈ Ξ where Ξ represents the diverse global game-design space, intro-
ducing implicit “randomisation” into our framework. This unique characteristic
of games makes them ideal for the purpose of visual domain randomisation.

Additionally, we also characterise all game-state-specific parameters of the
renderer, including the player’s spatial coordinates, health or ammunition status,
and camera perspective, as “game content parameters” (ξCt ), which dynamically
evolve at each timestep t in response to player interactions with the game envi-
ronment. Note that these parameters remain largely consistent across different
games that are categorised under the same genre.
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(a) Behaviour Alignment

(b) Behaviour Classification

Fig. 2: Overview of experiments and datasets used: (a) Behaviour Alignment: Be-
hAVE is trained on synchronised gameplay video and player actions from the SMG-25
train dataset, and evaluated on unseen games from the SMG-25 test dataset. (b)
Behavior Classification: We test the transferability of a video classification task.
BehAVE is trained independently on CS:GO and Minecraft, and transferred to the
SMG-25 test dataset.

Synchronised Gameplay Recording. At each timestep t, we obtain two
synchronised information streams—visuals and actions. Player inputs or actions
are selected from the shared action space of the game genre C and are represented
by a set of NC unique keypresses as At = {an}N

C

n=1, where an ∈ {0, 1}. Visuals
are recorded in the form of RGB frames Ft ⊂ Rh×w×3 where h is height and w
is width. The visuals of a game can be regarded as dynamic sequences of frames
that arise from the interactions between the player and the game, as follows:
Ft+1 = g(Ft, At, ξ

C
t | ξG). Thus, the video frames are generated sequentially by

the game renderer g processing the game content and player action information
at every timestep for the given predefined game style. This inherent character-
istic of gameplay visuals, derived from player interactions, enables us to employ
actions for effectively discerning visual content.

Data Pre-processing. Although we collect data at the timestep level, our
framework operates on videos for identifying behaviour. To this end, we aggre-
gate data over consecutive timesteps, forming a window of length T to obtain
video sequences V = (F1, F2, ..., FT ) and action sequences A = (A1, A2, ..., AT ).
Consequently, for each game, the synchronised gameplay-actions dataset is de-
noted as DG = {(Vi, Ai)}Ii=1 where |DG |= I. We construct the overall dataset
D =

⋃
G∈C D

G comprising of k = |D| “distinct” games from the game genre C,
adhering to the previously outlined selection strategy. This dataset forms the
basis for behaviour alignment training.
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3.2 Encoding the Modalities

Video Encoding and Alignment. As previously stated, we harness the ca-
pabilities of a pre-trained video foundation model in our study for video under-
standing. Let f denote the backbone model of a video encoder ; thus, the latent
representation of the backbone’s video encoding can be given by zvideo = f(V )
(Algorithm 1, line 3), where V denotes a 1 second video consisting of 16 con-
secutive frames. Note that we employ f within our training in a frozen state,
a decision influenced by our evaluation of foundational models as well as other
computational constraints. To facilitate the alignment of representation spaces
of different modalities within our framework, we employ a trainable MLP model
p that acts as an alignment projector and operates on top of the video encoder,
yielding the aligned projection encoding zalign = p(zvideo) (Algorithm 1, line 5).

Semantic Action Encoding. As previously explained, each video is asso-
ciated with a sequence of binary actions A, indicating the presence or absence
of a key-press at every timestep. Binary labels for actions, however, offer limited
insights into the inter-relationships among various sub-actions. For instance, in
FPS games, the binary encodings of the four actions—move left, move right,
shoot gun, and aim gun—are equidistant from one another. This encoding type,
however, fails to capture the underlying semantic similarity between the first two
actions (i.e., related to movement), the last two actions (i.e., related to weapon
use) and also the semantic difference between these two behavioural categories.

To address the above limitation, we propose to equip BehAVE with a hand-
crafted semantic action mapper function m which injects semantic information
into the action encodings via text. It maps the binary sequence of keypresses to a
behaviour text caption. Then, we use a pre-trained text foundation model in the
form of a text encoder h that gives the caption’s text encoding zcaption = h(m(A))
(Algorithm 1, line 4). We argue that such pre-trained encoders will be able to
better capture the inter-relationships among the joint distribution of actions that
are otherwise difficult to represent with binary action encodings.

3.3 Alignment Training

Upon obtaining the encodings of videos and actions, we initiate the training
phase of the framework using the specified dataset of games. We observe differ-
ent video sequences exhibiting similar behaviour across different games. Conse-
quently, to align the representation space of the video encoder to match that
of the text encoding of behaviour, we choose to train our projector head as at-
tached to the video encoder. Subsequently, we use a loss Lcos (Algorithm 1, line
6) based on the cosine similarity between the video projector encoding and the
behaviour text encoding so that the former aligns with the latter on the same
(shared) representation space. The loss is defined as follows:

Lcos(z
align, zcaption) = 1− zalign · zcaption

∥zalign∥2 ∥zcaption∥2
(1)
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Upon completion of the alignment training, the video encoder equipped with
the trained alignment projector can be utilised on any other visual content for
video understanding, without requiring access to any other modalities—such as
player actions—that only pertain to games.

In summary, the introduced BehAVE framework operates as follows. The
structurally enriched dataset of the framework facilitates domain randomisation,
the pre-trained video encoder enables video understanding, the semantic action
encoding introduces the semantic notion of behaviour, and the alignment training
module ensures enhanced transferability in video understanding.

4 Experiments

Figure 2 outlines the two primary experiments conducted in our study: 2a Be-
haviour Alignment, where we perform alignment training (Section 4.2), and 2b
Behaviour Classification, where we assess transferability of the aligned models
in a downstream classification task (Section 4.3). Before delving into the experi-
ments, in Section 4.1 we introduce the datasets and evaluation metrics employed.
Note that all experiments have been carried out on a single GTX 1070 (8GB)
GPU, highlighting the cost-effective nature of our method.

4.1 Dataset and Metrics

We test BehAVE on three datasets, namely SMG-25, CS:GO, and Minecraft,
across the two experiments of our study. The SMG-25 (Synchronised Multi-
Game FPS Dataset) is our newly introduced dataset illustrated in Figure 3
that encompasses synchronised gameplay visuals and player action data from
multiple commercial First Person Shooter (FPS) games, gathered following the
structure outlined in Section 3.1. It comprises over ∼250K data points spanning
25 visually diverse FPS games, encompassing actions related to player behaviour
categories such as panning (player looking around), navigation (player moving
in the environment) and weapon usage (player engaging the equipped weapon).
We partition it into an SMG-25 train set for use in Experiment (a) and an
SMG-25 test set used for evaluations in both Experiments (a) and (b). The
train-test splits consist of disjoint sets of games, enabling evaluation of zero-shot
performance on unseen games. Further details about this dataset are available in
supplementary material. Additionally, we source similar gameplay-actions data
from other commercial games, namely CS:GO (180K data points of cs-dust
level from [16]) and Minecraft (50K data points of contractor demonstrations
from [3]), which serve as training datasets for Experiment (b).

Evaluation Metrics. To comprehensively assess the alignment quality in
Experiment (a) and the transferability of aligned models in Experiment (b), we
employ several metrics. The Silhouette Score [24], ranging from -1 to 1, quanti-
fies the cluster quality of embeddings. In Experiment (a), it is used to gauge the
effectiveness of the alignment projection based on behaviour categories as clus-
ter labels, with a higher score indicating better-defined clusters. Additionally,
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Fig. 3: Screenshots from all games of the SMG-25 dataset: 1) PUBG: Battlegrounds
(PUBG Studios, 2017 ); 2) Payday 3 (Starbreeze Studios, 2023 ); 3) Insurgency: Sand-
storm (New World Interactive, 2021 ); 4) Call of Duty: MW2 (Infinity Ward, 2022 );
5) Far Cry 5 (Ubisoft, 2018 ); 6) Bioshock Infinite (Irrational Games, 2013 ); 7) Grand
Theft Auto 5 (Rockstar, 2013 ); 8) Rainbow Six: Siege (Ubisoft, 2015 ); 9) Team
Fortress 2 (Valve, 2007 ); 10) Wolfenstein (Machine Games, 2014 ); 11) Apex Legends
(Respawn Entertainment, 2019 ); 12) Atomic Heart (Mundfish, 2023 ); 13) Warham-
mer: Vermintide 2 (Fatshark, 2018 ); 14) Back 4 Blood (Turtle Rock Studios, 2021 );
15) Halo 4 (343 Industries, 2012 ); 16) Crysis 2 (Crytek, 2011 ); 17) Overwatch 2
(Blizzard Entertainment, 2022 ); 18) Deathloop (Arkane Lyon, 2021 ); 19) Valorant
(Riot Games, 2020 ); 20) Generation Zero (Systemic Reaction, 2019 ); 21) Polygon
(Readaster Studio, 2020 ); 22) Titanfall 2 (Respawn Entertainment, 2016 ); 23) Des-
tiny 2 (Bungie, 2017 ); 24) Shatterline (Frag Lab, 2022 ); 25) Operation Harsh Doorstep
(Drakeling Labs, 2023 ).

the Transferability Score evaluates results in Experiment (b) by considering the
percentage difference in classification test accuracy between models trained on
BehAVE encodings and those trained on foundation video encodings. A positive
difference signifies better transferability for the alignment method relative to the
corresponding foundation method, and vice versa.

4.2 Behaviour Alignment

In this experiment, depicted in Figure 2b, we test the BehAVE framework on the
SMG-25 dataset. Table 1 provides details on various pre-trained video and text
encoders analysed, while a comprehensive report on the configurations tested is
available in supplementary material. For the alignment projector, we opt for a
4-layer MLP with ReLU activations and 50% dropout. The size of the final layer
of the MLP is adjusted to match the encoding size of the selected text encoder.
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As elaborated next, we perform a thorough analysis of various design choices
incorporated into our framework.

Table 1: The video and text foundation models used in our experiments. (†) For
video and text models, respectively, input size indicates timesteps of RGB frames and
maximum token length. The number of parameters and the encoding size of the models
are also listed.

Input PreTrain Method Model Input Size† #Params Encoding Size

Video
I3D [5] 3D-ConvNet 16× 3× 224× 224 79M 512
VideoMAEv2 [34]

ViT-Base 16× 3× 224× 224 87M 768
MVD [36]

Text
GPT-2 [19]

Transformer
512 tokens 110M 768

CLIP [18] 77 tokens 63M 512
BERT [21] 256 tokens 33M 384

Action Encoding Schemes. We conduct a comparative study on our se-
mantic action encodings, focusing on actions alone, without videos, in our dataset.
We compare the cluster quality of actions encoded traditionally in binary form
(i.e., keypress labels) to text encodings (i.e., behaviour captions), with the aim of
highlighting benefits of infusing semantics into our BehAVE framework. Results
using only the unique set of actions from SMG-25 are presented in Section 5.1.

Impact of Alignment Training. Subsequently, we train BehAVE with
the previously mentioned pre-trained video and text encoders and analyse the
benefits of aligning the representation space of the video encoder with that of the
text encoder. The alignment projector is trained for 10 epochs using the adam
optimiser with a learning rate of 1e−3. The training data comprises a set of 15
games from SMG-25, processed in batch sizes of 128. The resulting representation
space post-alignment is evaluated using the silhouette score metric on 10 games
from the SMG-25 test set, allowing us to assess the “zero-shot” performance of our
methods on unseen games. In Section 5.1 we present results from 5 independent
runs, with randomised train-test splits for each run.

Sensitivity Analysis of k. For practical applications it is important to
analyse how the number of games (k) used during training affects alignment
performance. Thus, we explore the impact of varying the number of games in-
cluded in the training set, ranging from 1 to 15 and compare them on a fixed
test set of 10 games. We randomise the selection of games in the train and test
sets across the 5 runs reported in Section 5.1.

4.3 Behaviour Classification

Following alignment training, we emphasise the benefits of BehAVE encodings
for transferring a downstream task across visually distinct domains. For this pur-
pose, we select video classification as a representative task in video understand-
ing, with behaviour categories serving as the class labels. As depicted in Figure
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Table 2: Impact of Alignment Training. Average silhouette scores (with standard
deviations) over 5 runs for behaviour and game labels on the SMG-25 test set. Higher
scores indicate better performance for behaviour categories, while lower scores indicate
better performance for game labels. Best performing models are highlighted in bold.

Alignment Encoder Methods Alignment Behaviour Labels Game
(Approach) (Video - Action) Dimension Panning ↑ Navigation ↑ Weapon ↑ Label ↓

Foundation
I3D - None 512 0.03±0.04 0.04±0.04 0.00±0.01 0.07±0.07

(Baseline)
VideoMAEv2 - None 768 0.08±0.00 0.13±0.00 0.03±0.00 0.10±0.00

MVD - None 768 0.14±0.02 0.09±0.04 0.01±0.01 −0.05±0.02

Keypress
I3D - Binary 16 0.36±0.01 0.45±0.01 0.30±0.02 −0.21±0.01

(Naive)
VideoMAEv2 - Binary 16 0.35±0.00 0.48±0.01 0.32±0.01 −0.16±0.00

MVD - Binary 16 0.43±0.02 0.44±0.03 0.09±0.01 −0.24±0.02

BehAVE
VideoMAEv2 - GPT-2 768 0.51±0.02 0.58±0.05 0.20±0.05 −0.29±0.06

(Ours)
VideoMAEv2 - CLIP 512 0.40±0.01 0.49±0.01 0.35±0.00 −0.20±0.01

VideoMAEv2 - BERT 384 0.41±0.03 0.48±0.04 0.35±0.02 −0.17±0.03

2b, for each behaviour category, we train a classifier (3-layer MLP with binary
output) on video encodings of a single game (source domain) not included in our
SMG-25 dataset, and evaluate the performance of this classifier on multiple FPS
games from the SMG-25 test set (target domains). We first use foundation video
encodings as input to this classifier, and then BehAVE encodings are employed
in the same fashion. We ultimately compare the classifiers’ performance on FPS
games between the two methods using the transferability score metric. We first
perform this experiment with our source domain being CS:GO, a game of the
same genre, followed by a more challenging experiment with our source domain
being Minecraft, a similar first-person perspective game but from non-shooter
genre. In both cases, we evaluate classification performance on the SMG-25 test
set of games unseen in alignment training to gauge the zero-shot transfer capac-
ity of our classifiers; results are reported in Section 5.2.

5 Results

5.1 Behaviour Alignment

Comparing Action Encoding Schemes. Figure 4a presents the comparison
between binary action encoding and semantic text encoding from the pre-trained
CLIP text encoder [18]. The silhouette score for binary actions (0.11) is signif-
icantly lower than that for text encodings (0.41), showing that text encodings
produce better cluster quality. Findings are further supported by t-SNE pro-
jections, where actions in the same behaviour categories appear to form more
compact and distinct clusters. These results highlight the advantage of encoding
actions as text based on semantics, rather than just as binary keypresses.

Impact of Alignment Training. Table 2 presents the analysis of the repre-
sentation spaces before and after running BehAVE’s alignment training. First, we
observe that for all three behaviour categories, even alignment based on a naive
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(a) (b)

Fig. 4: Behaviour alignment experiments: (a) t-SNE embeddings and corresponding
silhouette scores of actions encoded as binary labels (left) compared to pretrained text
encoders (right). (b) Effect of varying the number of games in alignment training on
behaviour category clustering across 10 test games.

approach of binary encoding of actions (see middle block of table) improves clus-
tering quality across all video foundation models tested (upper block). Second,
more interestingly, we observe even bigger improvements when using BehAVE’s
text encoding scheme (lower block). As a consequence of this alignment, we also
observe that the domain gap, indicated by clustering on game labels, reduces for
all alignment approaches compared to the foundation approach. The benefits of
BehAVE are apparent across all tested configurations; a comprehensive list of
all video and text encoders are provided in supplementary material.

Sensitivity Analysis of k. Figure 4b illustrates the sensitivity of the do-
main randomisation process to the number of games (k) used in training. Perfor-
mance varies across different behaviour categories. For weapon usage and navi-
gation, we observe convergence between 4 to 6 games, indicating that a relatively
small number of games is sufficient for identifying these categories. Surprisingly,
for panning, alignment continues to improve beyond 10 games. We argue that
this phenomenon is attributed to the substantial variability in panning actions
across different games, particularly due to different mouse sensitivity presets in
SMG-25 that were approximated through visual inspection rather than precise
extraction from the game engine (additional details in supplementary material).
As a result, in our experiments with SMG-25, we chose 15 games for training
and 10 for testing to balance the effectiveness of domain randomisation while
maintaining a sufficiently large test set for zero-shot performance evaluation.

5.2 Behaviour Classification

Transfer from CS:GO (Same Genre). Figure 5a shows transferability scores
across all three behaviour categories, with CS:GO as the source domain and mul-
tiple unseen FPS games from the SMG-25 test set as target domains. Notably,
we notice the poor transfer capacity of classifiers based on foundation encod-
ings. In the case of BehAVE, while the absolute performance of the classifiers
on source domains declines (highlighted in red above the respective bars), we
observe a 3% to 22% improvement in transfer to target domains (highlighted
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(a) CS:GO (Source) Unseen games (Target) (b) Minecraft (Source) Unseen games (Target)

Fig. 5: Behaviour classification accuracy across 3 behaviour categories when trans-
ferring from (a) CS:GO (FPS game) and (b) Minecraft (non-FPS game) to unseen FPS
games. Although BehAVE (aligned) encodings perform slightly worse on source domain
test sets than foundation (unaligned) encodings, they show significant improvements in
generalisation to target domains, highlighting BehAVE’s enhanced transfer capacities.

in green). These findings are in line with contemporary studies, such as those
in [2, 37], suggesting that minimising training error leads machines to absorb
all correlations, including spurious ones from data biases. As shown in Figure
1a, foundation models retain game-specific style information, leading to the ex-
ploitation of spurious correlations and poor generalisation. Conversely, BehAVE
reduces data bias impact, enabling generalisation to new test distributions by
discarding game-specific information, as seen in Figure 1b.

Transfer from Minecraft (Similar Genre). Figure 5b showcases similar
benefits when using Minecraft as the source domain, despite its non-shooter
nature. While panning category obtains minimal improvement, we see a 6% to
22% improvement in classifying navigation and weapon categories. Although
the weapon equipped by the Minecraft player is a pick-axe, the classifier is still
able to transfer this knowledge to the gun-related behaviours of SMG-25 games.
This indicates that our model, trained on a diverse dataset covering multiple
game genres with aligned semantic behaviour patterns, can generalise to new
genres with overlapping characteristics. However, while the results demonstrate
BehAVE’s transferability across genres, this exploration is preliminary; further
investigation into cross-genre transferability is left for future work.

6 Discussion

Downstream Applications. BehAVE’s zero-shot performance shows promis-
ing applications in imitation learning across both first-person shooter and non-
shooter game genres. While our focus has been on transferable video understand-
ing, a complementary study could explore representation learning optimised for
specific downstream tasks. Supplementary material includes initial experiments
on BehAVE’s potential in learning inverse dynamics models.
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Future Work. Future experiments could employ BehAVE to various game
genres, such as fighting, platformer, and driving games, with some, like driving
games, requiring additional action preprocessing like discretising steering [41].
Experiments could also assess training across multiple genres and evaluate trans-
ferability to unseen ones. Another direction is to keep pace with advancements in
foundation models like large language and vision-language Models, deepening ac-
tion understanding. With more computational resources and a larger team [29],
fine-tuning these models could enhance performance and transferability, making
BehAVE more adaptable to specific applications.

Scalability. As outlined in Section 4, we operate within a limited compute
and with a small team of annotators, hindering data collection expansion and
comparisons with end-to-end trained models. BehAVE could potentially perform
better with increased data and computational resources; however, our focus is on
introducing an accessible method that proves effective even at a smaller scale [29].

Ethical impact. This paper introduces a dataset of fully anonymised an-
notated FPS gameplay videos. Both the gameplay videos and the annotations
were collected in-house from participants in a laboratory setting under a data
collection protocol approved by the University Research Ethics Committee of the
University of Malta. The protocol was inspired by previously peer-reviewed work
cited in Section 2. We acknowledge the emerging trends in machine learning for
autonomous weapons research [25] and wish to clarify that this project has no
military applications and was not funded by military sources. Additionally, the
data collection protocol is exclusively applicable to video games, and the dataset
aims to support research in video games and artificial intelligence.

Dataset The dataset utilised in this research was derived from various com-
mercial games. All game data consisting of screen captured game graphics, is the
intellectual property of their respective game developers and publishers (see Fig-
ure 3). To the best of our knowledge the inclusion of the data in this study falls
under the provisions of fair use for the purpose of academic research, analysis,
and non-commercial study under US law, and text and data mining (TDM) for
research purposes under EU law. The dataset will be publicly available for future
studies under a non-commercial license to ensure scientific reproducibility.

7 Conclusion

In this paper, we introduced BehAVE, a video understanding framework that
uses a simulator-free domain randomization method, leveraging the inherent
variations in graphics and animations in commercial video games. Tested on
first-person shooter games, BehAVE effectively aligns video encodings of similar
player behaviours across different games. It outperforms foundation models in
zero-shot transferability to unseen FPS games during a behaviour classification
task, even when trained on games from different genres like Minecraft. BehAVE
offers a strong and efficient method for generalising perception across visually
diverse environments.
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