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Abstract—Is it possible to predict the affect of a user just
by observing her behavioral interaction through a video? How
can we, for instance, predict a user’s arousal in games by
merely looking at the screen during play? In this paper we
address these questions by employing three dissimilar deep
convolutional neural network architectures in our attempt to
learn the underlying mapping between video streams of gameplay
and the player’s arousal. We test the algorithms in an annotated
dataset of 50 gameplay videos of a survival shooter game and
evaluate the deep learned models’ capacity to classify high vs low
arousal levels. Our key findings with the demanding leave-one-
video-out validation method reveal accuracies of over 78% on
average and 98% at best. While this study focuses on games and
player experience as a test domain, the findings and methodology
are directly relevant to any affective computing area, introducing
a general and user-agnostic approach for modeling affect.

Index Terms—computer vision, gameplay footage, deep learn-
ing, arousal, affect classification

I. INTRODUCTION

Designing general methods that are capable of performing
equally well across various tasks has been a traditional vision
of artificial intelligence [1]. A milestone study in that direction
is the work of Mnih et al. [2] who achieved superhuman per-
formance when playing several 2D games by merely observing
the pixels of the screen. As impressive as these results might
be, they are still limited to a particular set of tasks an agent
needs to perform (i.e. play 2D Atari games) with clearly-
defined objectives (i.e. maximize score). To which degree,
however, could such general pixel-based representations learn
to predict subjectively-defined notions such as emotion?

In this paper we attempt to address the above question
based on the assumption that the behavior captured via the
video of an interaction interweaves aspects of user experience
that computer vision algorithms may detect. Thus, our key
hypothesis is that we can construct accurate models of affect
based only on the pixels of the interaction. In the current study
we test this hypothesis in the domain of games by assuming
that there is an unknown underlying function between what
a player sees on the screen during a gameplay session and
the level of arousal in the game. We use games as our
initial domain in this endeavor, as gameplay videos have the
unique property of overlaying the game context onto aspects of
playing behavior and affect. Given that player affect is already
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embedded in the context of playing, the dominant affective
computing practice suggesting the fusion of context with affect
is not necessary in this domain [3]–[8]. Our approach is
general and applicable to a variety of interaction domains
beyond games since it only relies on decontextualized input
(i.e. raw pixel values).

Given the spatio-temporal nature of the task, we use three
types of deep convolutional neural network (CNN) architec-
tures to classify between low and high values of annotated
arousal traces based on a video frame or a video sequence. In
particular, we test the CNNs in a dataset of 50 gameplay videos
of a 3D survival shooter game. All videos have been annotated
for arousal by the players themselves (first-person annotation)
using the RankTrace [9] continuous annotation tool. Our key
findings suggest that the task of predicting affect from the
pixels of the experienced content is not only possible but also
very accurate. Specifically, the obtained models of arousal
are able to achieve average accuracies of over 78% using
the demanding leave-one-video-out cross-validation method;
the best models we obtained yield accuracies higher than
98%. The results also demonstrate—at least for the examined
game—that player experience can be captured solely through
on-screen pixels in a highly accurate and general fashion.

This paper is novel in several ways. First, this is the first
attempt to model player affect just by observing the context of
the interaction and not through any other direct manifestation
of emotion or modality of user input; in that regard the solution
we offer is general and user-agnostic. Second, to the best of
our knowledge, this is the first time a study attempts to map
directly from gameplay screen to game experience and infer
a function between the two. Finally, three CNNs variants are
compared for their ability to infer such a mapping in affective
computing; the high accuracy values obtained demonstrate
their suitability for the task.

II. RELATED WORK

This section covers the related areas of affect modeling
via videos, deep learning for images and videos, and affect
modeling in games.

A. Video-Based Affect Modeling

Videos have been at the core of interest for both eliciting and
modeling emotions in affective computing [10]. Typically, the
video features a human face (or a group of faces) and emotion
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is modelled through the detection of facial cues (see [3], [11],
[12] among many) due to theoretical frameworks and evidence
supporting that facial expressions can convey emotion [13]–
[15]. Beyond the facial expression of a subject, aspects such
as the body posture [16], [17], gestures [18] or gait [19], [20],
have been used as input for modeling affect.

To estimate the affective responses elicited to a person
by external stimuli, affect annotations of such responses are
required naturally. Indicatively, Chen et al. [21] created a
database of GIF animations, which users could rank across
several affective dimensions, and modelled affect based on
visual and tag features of the GIFs. In general, the onerous task
of annotation makes such tasks “intrinsically a small-sample
learning problem” [22]. This makes data-intensive methods
such as deep learning rather inappropriate. However, recent
advances in deep learning have spurred research interest in
emotion expression corpora, with several medium- and large-
scale datasets as surveyed in [23]. CNNs were first applied
in [24] to predict dimensional affective scores from videos,
but the issue of small samples (raised above) challenged CNN
learning. In [25], CNNs were combined with recurrent neural
networks to model arousal-valence using the Aff-Wild database
[26]. In [27] the authors exploit deep end-to-end trainable
networks for recognizing affect in real-world environments.
Finally, McDuff et al. [3] fused facial expression data and
videos of advertisements to classify whether viewers liked the
videos or were willing to view them again.

The modeling work presented here is unconventional within
the broader affective computing field as it utilizes videos
as both the elicitor of emotion and the sole modality for
modeling affect. In a sense, what we achieve with the proposed
approach is a general method for modeling affect via videos,
as neither facial nor bodily expression is available as input
to the affect model. The obtained high accuracies—at least
within the games domain— suggest that this subject-agnostic
perspective is not only possible but it also yields models of
high predictive capacity.

B. Deep Learning for Images and Videos

Conventional machine learning methods have often been
used for pattern recognition in images, videos and other data
types, but have been held back by the requirement that raw
data needed to be transformed to a suitable representation via
a handcrafted feature construction process based on expert
knowledge. The recent success of deep learning [28] ap-
proaches is largely due to their ability to learn representations
directly from the raw data via the composition of simple but
nonlinear data transformations. Very complex functions can
be learned by combining enough transformations, and deep
learning has shown tremendous success in visual recognition
[29], natural language processing [30] and agent control [2].

Convolutional neural networks are deep learning models
which apply two-dimensional trainable filters and pooling
operations on the raw input, resulting in a hierarchy of
increasingly complex features. By design, CNNs are able
to encode the spatial information of their inputs. CNNs are

therefore particularly powerful in discovering patterns in 2D
images [29]. CNNs have also been applied for classification of
video sequences, similar to this paper, using a frame-by-frame
input or a 3D representation with a temporal dimension [31],
[32]. While Jia et al. [33] first used 3D CNNs on cropped
parts of a video, Ji et al. proposed 3D CNNs for any video
classification under the assumption that “2D ConvNets lose
temporal information of the input signal right after every
convolution operation” [32]. The testbed of Ji et al. was the
C3D dataset (1.1 · 106 videos of 487 sports categories) with
video frames resized to 128×171 pixels. The seminal paper of
Karpathy et al. [31] explored several architectures for fusing
information over the temporal dimension, including an early
fusion approach which combined RGB channels over time
(as 4D CNN) and a late fusion which used two single-frame
networks (each receiving frames spaced half a second apart)
and compared outputs to derive global motion characteristics.
Similarly to [32], the work of Karpathy et al. was also tested
on the C3D dataset, but videos were resized and cropped to
170× 170 pixels.

This paper uses a game footage dataset which is far smaller
than the data available to the above studies, which necessitated
a simplification of both the video input (which was downscaled
more aggressively and only used the brightness channel) and
the CNN architecture (with far fewer trainable parameters).

C. Affect Modeling in Games

Player modeling is the study of computational models of
players, their behavioral patterns and affective responses [34].
If target outputs are available, a player model considers some
input modality regarding the player (e.g. their gameplay and
physiology) and is trained to predict aspects of the in-game
behavior or the player experience. Indicatively, in studies with
Super Mario Bros. (Nintendo, 1985) gameplay data (e.g. num-
ber of deaths) combined with level features (e.g. number of
gaps) [35], or the player’s posture during gameplay [36] were
used to predict the player’s reported affect.

This study advances the state of the art in player modelling
by using solely raw gameplay information to model a player’s
emotions. Within the broader area of artificial intelligence
and games [37], the majority of the works that analyse and
extract information from gameplay videos focus on inferring
the strategy, structure and the physics of the games themselves
[2], [38]. In this work, instead, we use the same kind of
information for modelling a player’s experience in a general
fashion (from pixels to experience), ignoring the game per se.
At the same time, the most common approaches for analysing
player experience, besides game and gameplay information,
heavily rely on direct measurements from players, such as
face monitoring, speech and physiological signals; see e.g. [4],
[36], [39]). Unlike these approaches, our methodology relies
solely of gameplay video information. This critical difference
advances player experience modelling as the approach does
not require access to intrusive player measurements collected
under well-defined experimental settings, thus allowing the
vast collection of data. As gameplay videos are already avail-



able over the web and produced daily in massive amounts,
the approach is feasible and can potentially generalize to any
game.

III. METHODOLOGY

This paper explores the degree to which frames and videos
of gameplay footage can act as the sole predictors of a player’s
affective state. This section describes the gameplay dataset and
how it was collected, the employed CNN architectures, as well
as the dataset preparation process for training the CNNs.

A. Dataset Description

The gameplay videos we used in the experiments of this
paper are captured from a shooter game developed in the Unity
3D game engine. Specifically, we use the Survival Shooter
[40], which is a game adapted from a tutorial package of Unity
3D. In this game the player has 60 seconds to shoot down
as many hostile toys as possible and avoid running out of
health due to toys colliding with the avatar. Hostile toys keep
spawning at predetermined areas of the level and converge
towards the player. The player’s avatar has a gun that shoots
bright laser beams, and can kill each toy with a few shots.
Every toy killed adds to the player’s score.

The data was collected from 25 different players who each
produced and annotated two gameplay videos. Each player
played a game session (60 seconds) and then annotated their
recorded gameplay footage in terms of arousal. Annotation
was carried out using the RankTrace annotation tool [9] which
allows the continuous and unbounded annotation of affect
using the Griffin PowerMate wheel interface. Gameplay videos
were captured at 30Hz (i.e. 30 frames per second) while the
RankTrace tool provided four annotation samples per second.
Figure 1 shows three indicative frames of the Survival Shooter
gameplay and the annotations of arousal from RankTrace.

The corpus of gameplay videos was cleaned by omitting
gameplay footage under 15 seconds, resulting in a clean corpus
of 45 gameplay videos and a total of 8, 093 annotations of
arousal. While the average duration of playthroughs in this
corpus is 44 seconds, in 60% of the playthroughs the player
survived for the full 60 seconds and completed the game level.

B. Training Data Preparation

In order to evaluate how CNNs can map raw video data to
affective states, we train CNN models using as input individual
frames that contain only spatial information, and video seg-
ments that contain both spatial and temporal information. This
section describes the input and the output of the networks.

Since RankTrace provides unbounded annotations, we first
convert the annotation values of each video to [0, 1] via min-
max normalization and synchronize the recording frequency of
videos (30Hz) with annotations (4Hz) by treating the arousal
value of any frame without an annotation as the arousal
value of the last annotated frame. In order to decrease the
computational complexity of training and evaluating CNNs,
we convert RGB video frames to grayscale and resize them to
72× 128 pixels; this results in a more compact representation

which considers only the brightness of the image and not its
color. Due to the stark shadows and brightly lit avatar and
projectiles in the Survivor Shooter, we consider that brightness
is likely a core feature for extracting gameplay behavior.
While RGB channels or a larger frame size could provide
more information about the gameplay and affect dimensions,
it would require substantially more data for CNNs to train on.

Regarding the input of the CNN, we have to decide which
frames and video segments will be used as input points.
Schindler and Van Gool [41] argue that a small number
of subsequent frames are adequate to capture the content
of a scene. Based on this argument, the authors of [42]
achieve high human activity recognition rates by describing
an activity with mini video batches of 8 subsequent frames.
Motivated by these works, we also use 8 subsequent frames
to characterize the player’s state of affect. Specifically, the
gameplay videos are split into non-overlapping segments of 8
subsequent frames which are used as input to the temporally
aware CNN architectures. If the input is a single image, the
last frame of each video segment is used.

The output of the CNN is straightforward to compute based
on the 8-frame video segments. Since annotations are made at
4Hz, in most cases a video frame segment would include one
annotation. In cases where two annotations are given within 8
frames, their average value is computed. RankTrace produces
interval data and thus it may seem natural to state the problem
as a regression task; given that we aim to offer a user-agnostic
and general approach, however, we do not wish to make any
assumptions regarding the value of the output as this may
result in highly biased and user-specific models [43]. For this
reason we state our problem as a classification task and trans-
form interval values into binary classes (low and high arousal)
by using the mean value of each trace as the class splitting
criterion (see Fig. 1). The class split may use an optional
threshold parameter (ε) to determine the zone within which
arousal values around the mean are labelled as ‘uncertain’ and
ignored during classification. Detailed experiments with the ε
parameter are conducted in Section IV-B. While alternative
ways of splitting the classes were considered (such as the area
under the curve or the median), in this paper we include only
experiments with the most intuitive way to split such a trace
given its unbounded nature: its mean.

C. CNN Architectures

In this study we explore three different CNN architectures.
The first two apply 2D trainable filters on the inputs (single
frames or videos), while the third applies 3D trainable filters.
All CNN architectures have the same number of convolutional
and fully connected layers, the same number of filters at their
corresponding convolutional layers and the same number of
hidden neurons at their fully connected layer. This way we
are able to fairly compare the skill of the three architectures
to map video data to affective states, and at the same time
to gain insights on the effect of temporal information to the
classification task. It should be noted that current state-of-
the-art CNNs for videos and images alike use much larger
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Fig. 1. The normalized to [0, 1] trace of affect (arousal) produced by RankTrace, the uncertainty zone define by ε, and three indicative frames of one of the
Survival Shooter gameplays.

architectures (e.g. [31]); in this paper, however, we explore
more compact architectures due to the small size of the dataset.

1) 2DFrameCNN: The first CNN architecture (see Fig. 2)
uses as input a single frame on which it applies 2D filters.
The 2DFrameCNN architecture consists of three convolutional
layers with 8, 12 and 16 filters, respectively, of size 5×5 pixels.
Each convolutional layers is followed by a 2D max pooling
layer of size 2 × 2. The output of convolutions is a feature
vector of 960 elements, which is fed to a fully connected
layer with 64 hidden neurons that connect to the output. This
architecture has approximately 6.9 · 104 trainable parameters
and exploits only the spatial information of the video data.

2) 2DSeqCNN: The second CNN architecture applies 2D
filters to input video segments. The 2DSeqCNN network has
exactly the same topology as the 2DFrameCNN architecture
but the number of trainable parameters is slightly higher
(approximately 7 · 104) as the inputs are video sequences.
This architecture implicitly exploits both the spatial and the
temporal information of the data.

3) 3DSeqCNN: The third CNN architecture applies 3D
filters to input video segments. As with the other architectures,
3DSeqCNN has three convolutional layers with 8, 12 and 16
filters, respectively, of size 5 × 5 × 2 pixels. Each one of
the convolutional layers is followed by a 3D max pooling
layer of size 2× 2× 1. The 3D convolutional layers produce
a feature vector of 1,920 elements, which is fed to a fully
connected layer with 64 neurons. Due to its 3D trainable filters,
3DSeqCNN has approximately 14.5 ·104 trainable parameters.
This architecture explicitly exploits both the spatial and the
temporal information of the data due to the application of the
trainable filter along the spatial and the temporal dimensions.

While 2DFrameCNN receives as input a single frame, both
2DSeqCNN and 3DSeqCNN receive as input a sequence of 8
frames, i.e. a time slice of the video lasting 267 milliseconds.
In all three network architectures, we apply batch normaliza-
tion on the features constructed by the convolutional layers
before feeding them to the last fully connected layer, which
in turn feeds two output neurons for binary classification. All
of the hyperparameters of the CNN architectures are manually
selected in an attempt to balance two different criteria: (a)

Input: 72 x 128

C1: 68 x 124 x 8

P1: 34 x 62 x 8

C2: 30 x 58 x 12

P2: 15 x 29 x 12

C3: 11 x 25 x 16

P3: 5 x 12 x 16

F: 64

(flatten: 960)

high
low

Fig. 2. The architecture of 2DFrameCNN. Convolutional layers are denoted
with a “C”, max pooling layers with a “P”, and fully connected layers with
an “F”.

computational complexity (training and evaluation times), and
(b) learning complexity (ability to avoid under-/over-fitting).

IV. EXPERIMENTS

To test our hypothesis that there is a learnable underlying
function between affect and its visual manifestations on game-
play videos, in this section we use the three CNNs for classi-
fying gameplay footage as high or low arousal (as discussed in
Section III-B). As mentioned earlier, this binary classification
approach is well-suited for unbounded and continuous traces
(as the mean of each annotation trace is different), and can
produce a sufficiently rich dataset for deep learning. Section
IV-A explores the performance of different CNN architectures
on this naive split between high and low arousal, while Section
IV-B explores the impact of an uncertainty bound that filters
out segments that are too close to the mean arousal value.

In all reported experiments, we follow the demanding leave-
one-video-out scheme [3]; this means that we use data from
44 videos to train the models and then we evaluate their
performance on the data from the video that is not used for
training (i.e. test set). This procedure is repeated 45 times
until we test the performance of CNNs on the data from all
videos. During the training of the models we also employ early
stopping criteria to avoid overfitting. For early stopping, data
of the 44 videos is shuffled and split further into a training set
(90% of the data) and a validation set for testing overfitting



TABLE I
TEST ACCURACY FOR BINARY CLASSIFICATION OF DIFFERENT CNN

ARCHITECTURES, AND FOR DIFFERENT THRESHOLD VALUES FOR
CLASSIFICATION (ε). THE 95% CONFIDENCE INTERVAL IS INCLUDED.

ε Baseline 2DFrameCNN 2DSeqCNN 3DSeqCNN
0.00 51%±0.0% 70%±4.2% 74%±4.7% 73%±4.4%
0.05 56%±0.3% 72%±5.6% 73%±5% 73%±5.3%
0.10 55%±0.3% 74%±5.7% 75%±5.6% 74%±5.7%
0.20 50%±0.3% 77%±5.7% 78%±5.6% 77%±5.7%

(10% of the data). Early stopping is activated if the loss on
the validation set does not improve for 15 training epochs.
Reported accuracy is the classification accuracy on the test
set, averaged from 45 runs. Significance is derived from the
95% confidence interval of this test accuracy. The baseline
accuracy is the average classification accuracy on the test set,
when we always select the most common class in the 44 videos
of the training set. Naturally, the baseline also indicates the
distribution of the ground truth between the two classes.

A. Binary Classification of Arousal

The most straightforward way to classify segments of
gameplay footage is based on the mean arousal value of
the annotation trace, treating all annotations above the mean
value as high arousal and below it as low arousal. This naive
classification results to a total of 8, 093 data points (i.e. 8-
frame segments assigned to a class) from all 45 videos.

The top row of Table I reports the average classification ac-
curacy of the CNN models with the naive classification method
(ε = 0). All models have accuracies over 20% higher than the
baseline classifier, which suggests that CNNs, regardless of
the architecture used, have the capacity to map raw gameplay
video to arousal binary states. The model that performs best
is the 2DSeqCNN, which implicitly exploits the temporal
information in the data. Its accuracy is over 3% higher than the
2DFrameCNN which exploits only spatial information, but it
is only slightly better than the 3DSeqCNN. The ability of the
3DSeqCNN to explicitly exploit the temporal information does
not seem to significantly affect its performance. Comparing the
performance of the 2DFrameCNN with the performances of
the other two CNN models indicates that although the temporal
information contributes to the learning process, the dominant
information of the inputs comes from their spatial and not
their temporal structure. This may be due to the very short
duration of the input video segments (267 milliseconds), or
due to strong predictors of arousal existent in the heads-up
display of the game (see Section IV-C).

B. Exploring the Uncertainty Bound of Arousal

While classifying all data above the mean value of the
arousal trace as high yields a large dataset, the somewhat
arbitrary split of the dataset may misrepresent the underlying
ground truth and also introduce split criterion biases [43],
[44]. Specifically, frames with arousal values around the mean
would be classified as high or low based on trivial differences.
To filter out annotations that are ambiguous (i.e. close to

the man arousal value Â), we use the ε value and omit any
datapoints with an arousal value A within the uncertainty
bound determined by ε: Â− ε < A < Â+ ε (see Fig. 1 for a
graphical depiction). This section tests how the performance
of the three CNN classifiers changes when three different
threshold values ε = {0.05, 0.10, 0.20} remove ambiguous
data points from the dataset.

Table I shows the performance of different CNN architec-
tures for different threshold values. It should be noted that
removing datapoints affects the baseline values quite substan-
tially as representatives of one class become more frequent
than for the other class. Regardless, we see that the accuracy of
all architectures increases when data with ambiguous arousal
values is removed, especially for higher ε values. For ε = 0.20,
the accuracy of all three CNN architectures is 26% to 28%
higher than the baseline. The 2DFrameCNN also benefits
from the cleaner dataset, being second in accuracy only to
2DSeqCNN for ε = 0.10 and ε = 0.20. The additional
trainable parameters of 3DSeqCNN seem to require more data
than what is available in the sparser datasets. Indeed, the
number of total datapoints decreases by 12% for ε = 0.05,
by 25% for ε = 0.10, and by 44% for ε = 0.20 (for a total
of 4, 534 datapoints). It is obvious that having a cleaner but
more compact dataset can allow the less complex architectures
(2DFrameCNN, 2DSeqCNN) to derive more accurate models
but can challenge complex architectures (3DSeqCNN). The
trade-off poses an interesting problem moving forward for
similar tasks of gameplay annotation.

C. Analysis of Findings

Experiments showed that it is possible to produce sur-
prisingly accurate models of players’ arousal from on-screen
gameplay footage alone—even from a single frame snapshot.
Especially when removing data with ambiguous arousal anno-
tations, a model of 2DFrameCNN can reach a test accuracy of
98% (at ε = 0.20), although on average the test accuracy is at
77%. It is more interesting, however, to observe which features
of the screen differentiate frames or videos into low-arousal or
high-arousal classes. This can be achieved by showing which
parts of the frame have the most influence on the model’s pre-
diction, e.g. via Gradient-weighted Class Activation Mapping
[45]. This method computes the gradient of an output node
with respect to the nodes of a convolutional layer, given a
particular input. By multiplying the input with the gradient,
averaging over all nodes in the layer and normalizing the
resulting values, we obtain a heatmap that shows how much
each area of the input contributed to increasing the value of
the output node.

Figure 3 shows the activation maps for low versus high
arousal of a sample gameplay frame, calculated based on the
2DFrameCNN. While 2DSeqCNN has higher accuracies, it is
far more challenging to visually capture the sequence on paper
so we opt for the frame-only information of 2DFrameCNN.
We immediately observe that both low and high arousal
predictors focus on aspects of the heads-up display (HUD)
which are overlaid on the 3D world where the player navigates,



(a) Frame of gameplay footage (in full resolution and full-color)

(b) Activation of Low Arousal (c) Activation of High Arousal

Fig. 3. Activation maps for a sample frame of the game

shoots and collides with hostile toys. Specifically, the score at
the top center of the screen contributes substantially to high
arousal. Interestingly, the score keeps increasing during the
progression of the game as the player kills more and more
hostile toys. The impact of time passed in the game—and
by extent increasing score—on arousal can be corroborated
by the annotations themselves: in most cases the annotators
kept increasing the arousal level as time went by rather than
decreasing it. Tellingly, of all arousal value changes in the
entire dataset, 807 instances were increases and 297 were
decreases. Thus, both score and time remaining would be
simple indicators of low or high arousal. Interestingly, the
HUD element of the player’s health was not considered for
either class. Among other features of the 3D gameworld,
hostile toys are captured by the low arousal output, while an
obstacle next to the player is captured by the high arousal
output. It is less clear what other areas activated on the screens
of Fig. 3 capture with regards to arousal.

V. DISCUSSION

This paper presented the first attempt, to our knowledge,
of modelling affect solely via videos that do not display
human behavior directly; such videos of interaction instead
display human behavior in an indirect manner as emotion is
manifested through and annotated on the video per se. We
also introduced the first modeling attempt of players’ affective
states based on the on-screen captured gameplay alone. Using
a time window of 8 frames and selecting either a single frame
or the frame sequence within that time window, a number of
CNN architectures were tested. Results show that processing
the gameplay footage as short videos results in higher classifi-
cation accuracy, although in general all three models perform
comparably. Moreover, when data within an uncertainty bound

around the trace’s mean arousal are not considered, the smaller
remaining dataset challenges 3D convolutional layers but
yields highly accurate models (approximately 78% accuracy,
on average) for simpler networks based on frames or frame-
by-frame processing of videos. Despite this paper being a
first attempt at a challenging task of predicting player affect
from gameplay pixels, the results are promising and point to a
number of extensions in future work. We discuss these below.

As this was an initial exploratory study, there is a number
of assumptions made for both the input and the output of the
affect model. In terms of input, we used only the brightness
channel of the gameplay footage; in part, this was because
of the structure of the game itself, due to the high-contrast
“horror” aesthetic, and because one channel allowed us to train
models faster and with the few data points at hand. Future
experiments, however, should explore other formats for CNN-
based video classification in the literature, such as scaling the
input to be a higher-resolution image, and using hand-crafted
channels that include edge detection [32] or RGB channels
[31]. While the goal of this study was to detect player arousal
from gameplay footage alone, future studies could explore how
fusing gameplay footage with other information streams such
as gameplay logs and physiological data [40] would affect the
model’s accuracy. In terms of the affect labels (output), taking
the mean arousal value (normalized to a player’s full trace)
within a time window was an intuitive solution, but could be
expanded on and refined. More relative ways of processing
annotations within a time window, such as amplitude and
average gradient [9], [40], could be explored. Moreover, the
video information (processed through a CNN) could be used
to predict not the class of high or low arousal but instead
whether there is an increase or decrease from the previous time
window. This method would better align with the temporal
nature of gameplay videos, but would likely decrease the
size of the dataset as many subsequent time windows have
the same mean arousal value (see Fig. 1). Finally, using a
sliding time window rather than a non-overlapping window of
8 frames would increase the size of the dataset and perhaps
better capture all annotations.

VI. CONCLUSION

In this paper we introduced a general method that captures
affect solely from videos which embed forms of human
computer interaction but without humans explicitly depicted
in the video. Using games as our domain, we explored how
gameplay footage can be processed and fed to three different
convolutional neural network architectures that, in turn, predict
a player’s arousal levels in a binary fashion. The obtained
models of arousal trained this way yield accuracies of up to
78% on average (98% at best). Our analysis also reveals the
different on-screen aspects that contribute to higher vs. lower
arousal in the testbed game. While this initial study focuses on
games as a domain, the findings and methodology are directly
relevant to any affective computing area, introducing a general
and user-agnostic approach for modeling affect.
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