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Abstract
Horror games form a peculiar niche within game de-
sign paradigms, as they entertain by eliciting negative
emotions such as fear and unease to their audience dur-
ing play. This genre often follows a specific progression
of tension culminating at a metaphorical peak, which is
defined by the designer. A player’s tension is elicited
by several facets of the game, including its mechan-
ics, its sounds, and the placement of enemies in its
levels. This paper investigates how designers can con-
trol and guide the automated generation of levels and
their soundscapes by authoring the intended tension of
a player traversing them.

Procedural content generation (PCG) is an extensive area of
game research, and is often used as an effective method to re-
duce content creation costs and increase game longevity (To-
gelius et al. 2011). However, research in procedural audio is
uncommon in the field (Collins 2013), likely due to the ad-
ditional demands that sound often requires. Digital games
are multi-faceted creative domains (Liapis, Yannakakis, and
Togelius 2014), where facets such as audio, visuals, levels
and game mechanics work in conjunction to create interac-
tive digital experiences (Lopes and Yannakakis 2014). This
paper investigates the interplay between level design and
sound, where designers define the player experience while
the system generates levels and their respective soundscapes
to accommodate the designer’s intentions.

The survival horror genre is unique in its heavy reliance
on sound to convey negative affective states such as shock,
disgust, ecstasy, fear and relief (Ekman and Lankoski 2009).
It also focuses on exploration and hiding as players have lim-
ited combat ability (e.g. no weapons or limited ammunition).
These complex characteristics of player affect raise impor-
tant challenges for the generation of levels and soundscapes,
where the focus is in evoking these types of emotions. For
instance, an interesting question is how a level generator can
anticipate and influence the affective state of a player, while
consistently balancing feelings such as stress and relief; or
how players navigate through a level under the effects of
stress caused by previously encountered monsters. This pa-
per tackles some of these challenges by exploring the gener-
ation of levels and soundscapes in the survival horror genre
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while also operating on a simplified player model, simulat-
ing horror gameplay during level traversal.

This paper presents an extension to the Sonancia proto-
type (Lopes, Liapis, and Yannakakis 2015), a system ca-
pable of generating multiple facets of horror games. Lev-
els consist of rooms in a haunted mansion that are proce-
durally generated via genetic search, while audio snippets
are distributed throughout the rooms (i.e. level sonification).
Earlier work focused on generating the architecture of the
level autonomously based on the distance of a singular path.
This paper focuses on the generation of levels which include
added gameplay elements (i.e. monsters, quest items), and
on the generation of their soundscapes, where notions of ten-
sion and suspense are used to drive the level and soundscape
generative process respectively.

Sonancia allows designers to define the flow of relax-
ation and tension through the generated level. To do this, the
system requires two tension curves: the desired (designer-
specified) tension curve (DTC) and the actual (level-based)
tension curve (LTC). The system searches, via a genetic al-
gorithm, for room setups where the actual tension curve
more closely matches the desired one, so that generated
levels and their respective soundscapes follow the designer
specifications as closely as possible, while still maintaining
a degree of variability.

Related Work
Digital games have been using PCG techniques for over
30 years, since games such as Rogue (Toy and Wichman
1980). More recently PCG has been a focus of academic
interest, including the development of alternative PCG ap-
proaches (Togelius et al. 2011) and the adaptation of con-
tent to specific player experiences (Yannakakis and Togelius
2011). Often level generation is the focus of PCG research,
with notable examples including the generation of 2D plat-
form levels (Shaker et al. 2012), real-time strategy maps (Li-
apis, Yannakakis, and Togelius 2013), racing tracks (To-
gelius, De Nardi, and Lucas 2007), first-person shooter
maps (Cardamone et al. 2011), among others (Shaker, To-
gelius, and Nelson 2015). The horror genre is no exception
to PCG; games such as Daylight (Zombie Studios, 2014)
procedurally generate levels and enemy positions, while
the AI director of Left 4 Dead (Valve, 2008) procedurally
spawns zombies according to a tension model and the pro-



gression of players in the level. Sonancia draws inspiration
from the tension model of Left 4 Dead, as the level structure
and monster placement are generated based on a designer-
specified progression of tension.

Digital games, especially those in the horror genre, rely
on game audio as it enhances the player experience; the
soundscapes created by game audio are capable of immers-
ing players into the virtual world (Collins 2013; Gasselseder
2014). Although some arguments can be made that digital
games already apply some form of procedural audio, such
as the sounds of player actions in the background of mul-
tiplayer games (Garner and Grimshaw 2014), much more
could be accomplished by orchestrating between virtual lev-
els and the sounds played therein. Several professional tools
such as the sound middleware of UDK (Epic Games, 2004)
provide procedural sound components, albeit very simple
(i.e. variations of notes in a specific scale). This shows an
increasing commercial interest in sound as a procedurally
generatable game facet.

On the other hand, games such as Audio Surf (Fitterer,
2008) and Vib Ribbon (Sony Entertainment, 2000) have pre-
viously focused on music-driven level generation, where
the characteristics of the music influence the level gener-
ation. Proteus (Key and Kanaga, 2013) explored several
ideas on how spatial positioning, visuals and player inter-
action affected and influenced sounds played in realtime.
AudioInSpace (Hoover et al. 2015) is another example that
combines both gameplay and audio within a side-scrolling
space shooter that evolves its shooting mechanics based on
the music playing in the background, which is pre-selected
by the user or procedurally generated via artificial evolu-
tion. Scirea et al. (2014) have also investigated how music
could be procedurally generated in order to convey narrative
foreshadowing in digital games. This paper, instead, con-
centrates on developing methodologies capable of generat-
ing horror game levels and their corresponding sonification
based on various tension models.

Methodology
Sonancia is a multi-faceted content generation tool for a hor-
ror game taking place in a procedurally generated haunted
manor. The objective of the player is to collect an item deep
within the manor, while at the same time outrunning or hid-
ing from monsters that lurk inside it. Players do not have
weapons and for this reason must avoid direct confrontation.
In the current version of Sonancia players must only reach
the main quest item to complete a level; in later versions of
the game, players may be required to return to the entrance
in order to complete the level. Sonancia is composed of two
main modules: level generation and level sonification.

Generating Levels
Haunted manors consist of different rooms, separated by
walls, and doors that interconnect them. Rooms are de-
scribed by their room ID, and players start the game at the
room with the lowest room ID. Levels are also populated by
monsters and quest items (see Figure 1); the latter can be the
main quest item (collecting it completes the level) or side-
quest items which are optional. If more than one quest items

Figure 1: Generated manors consist of a set of rooms and in-
terconnecting doors. Thin black lines represent walls, while
thick red lines represent doors. Monsters are represented as
green triangles, the main quest item is represented as a blue
square, and sidequest items as pink circles. The darker room
is where the player starts the level from.

exist in the level, the one furthest from the player’s starting
room becomes the main quest item.

To efficiently create levels that follow a designer-specified
tension curve (DTC), a search-based PCG approach (To-
gelius et al. 2011) was chosen. Sonancia uses a mutation-
based genetic algorithm (GA) using roulette wheel selection.
The level architecture is represented by an array of integers.
Each integer maps to a specific tile of the level, and repre-
sents which room occupies that tile. Doors are represented
as tuple objects, describing which rooms are interconnected.
Monsters and quest items are tuple objects describing their
type (i.e. item or monster) and the room they are placed in.

Mutation can shift a room’s walls, divide rooms, connect
rooms with doors or remove doors (two rooms can only be
connected with one door), move spawnpoints (ensuring one
monster per room and one item per room) or add new mon-
sters. Mutation chances depend on the operator; for instance,
moving items affects the critical path and has a lower muta-
tion chance as it is disruptive to the evolutionary progress.
After mutation is applied, a flood fill algorithm ensures that
rooms are not disconnected and that rooms are larger than 5
tiles; if not, the gene is repaired to assimilate small or dis-
connected rooms with adjacent ones, moving items or mon-
sters as needed. Elitism is set to retain the fittest 3% of the
population in the next generation.

To determine the quality of a level, the fitness function
considers both the room layout (structure fitness) and the
distribution of monsters between rooms (tension fitness).
Both fitness dimensions are described below. When evolv-
ing levels, the two fitnesses are added to determine which
individual will be selected for mutation.

A level’s structure is evaluated based on the shortest path
from the player’s starting room to the main quest item; this
path is the critical path of the level (see Figure 2). Levels
with a critical path going through as many unique rooms as
possible receive higher scores. Structure fitness (fs) is cal-
culated as fs = Rs − Ps, where Rs is the number of rooms
that are uniquely traversed by each path from the start to the
main quest item as well as sidequest items, which discour-
ages linear levels; Ps is the number of rooms with no doors,



Figure 2: The critical path of a level, from the starting room
to the main quest item.

Figure 3: The LTC of the path of Figure 2 (black solid line)
and its corresponding suspense curve (red dotted line); the
latter is obtained by inverting the LTC.

which penalizes disconnected, unusable rooms.
Unlike other game genres, horror games attempt to create

a sense of unease that slowly builds up over time (Cheong
and Young 2008). Tension is visualized as a tension curve,
allowing designers to define the intended rise and fall of ten-
sion in the level (DTC). The x-axis of a tension curve is the
number of rooms visited along the critical path, while the
y-axis is the tension value of each room. A generated level
creates its own tension curve (LTC) by following the critical
path, increasing tension by 1 when a room contains a mon-
ster while decreasing tension by 0.5 when it does not (see
Figure 3). Matching DTC with LTC is done by fitting the in-
tended tension curve to the number of rooms available, then
evaluating their similarity via the tension fitness (ft):

ft =

r∑
i=0

1− | Li − Ti | (1)

where Li and Ti are the level-based and designer-specified
tension values of room i, respectively, and r is the total num-
ber of rooms on the critical path.

Note that DTC also acts as a designer constraint for the
maximum number of rooms on the critical path: levels with
more rooms than the x-axis of DTC receive a ft value of 0.

Sonifying Levels
Level sonification consists of both the selection and alloca-
tion (i.e. before play begins) and the mixing (i.e. during play)

of sound assets. When selecting sounds, Sonancia specifi-
cally takes into account the LTC, so that a level’s soundscape
is influenced by its structure; this ensures coherence between
the level and audio facets. Sonancia has access to a sound-
bank of approximately 50 human-authored recordings with
an average length of 4 seconds, where all assets are tagged
according to instrument, note, octave and suspense value;
the suspense value is an empirical measure of how dramatic
that particular sound is perceived by human listeners. These
tags inform Sonancia about the characteristics of each as-
set, allowing it to select sounds according to minor, major or
dissonant scales.

Audio Allocation: To increase audio fidelity and avoid
breaking player immersion, it is critical to select sounds
in an efficient manner and distribute them throughout the
generated level appropriately. Sonancia’s audio allocation
is a two-stage process consisting of instrument-based and
suspense-based audio selections.

The Instrument-based audio selection phase consists of
choosing an asset via roulette wheel selection based on its
instrument tag. Each instrument is given the same proba-
bility of being selected at the start of the process, which is
halved each time that instrument is chosen. This selection
algorithm also ensures that no recording is chosen twice, to
avoid repetition, and provides instrument variability.

The Suspense-based audio selection phase consists of
distributing the assets chosen during the previous phase
throughout the level based on their suspense tag and the level
suspense curve, which is the inverted LTC (see Figure 3).

Each audio asset is placed in a room within the gener-
ated level, and each room can only have one audio asset.
The algorithm starts by creating two arrays: one with the
selected audio assets and another with the rooms on the crit-
ical path. The audio asset array is sorted based on the value
of each sound asset’s suspense tag, while the room array is
sorted based on the level suspense curve. Assets and rooms
in the same position in their respective arrays are associated,
i.e. the sound asset is placed in that room. This ensures that
a consistency between both the audio assets and the rooms
are kept (i.e. high suspense audio assets are placed in rooms
with a high value in the level suspense curve).

Audio Mixing: The mixing algorithm controls how the
sounds selected by the process of audio allocation are played
during the game. To produce in-game relevant results, audio
mixing requires real-time information of the current game
state (e.g. where the player is at the time). The current ver-
sion of Sonancia employs a mixing rule which controls the
volume of sound depending on the player’s position. The au-
dio volume increases (or decreases) exponentially the closer
(or furthest) the player is from a neighbouring room. This
mixing rule allows players to hear the sound from a room
they are headed to, offering a sense of foreshadowing.

Experiments
For the purpose of testing the efficiency of the Sonancia
system, experiments with different ad-hoc designed tension
curves (DTCs) and map sizes are reported in this section.



Figure 4: Evolution of the total fitness (f ) and its compo-
nents fs and ft for the tension curve depicted in Figure 5(e).
Values are averaged across 100 GA trials; error bars show
standard error.

Tension Curve Variations
To test how evolved levels match a desired tension curve,
four experiments were performed using four different curves
(see Figure 5). The GA runs for 100 generations in 100 in-
dependent trials for each experiment. Indicatively, Figure 4
shows the best individuals’ fitness values obtained for the
curve depicted in Figure 5(e). Similar trends of fitness con-
vergence were found in all experiments with tension curves
of Figure 5, but are not presented here for brevity.

Figures 5(a)–5(d) show different levels generated by So-
nancia for a corresponding desired tension curve. The level
of Figure 5(a) attempts to match a V-shaped tension curve
(Figure 5(e)). The level contains 7 rooms on the critical path,
and therefore the desired tension curve is scaled along the x-
axis from 10 to 7 rooms. As the tension fitness attempts to
balance the placement of monsters to fit the DTC, monsters
are gathered towards the start and the end of the critical path.
However, a monster is also placed in the midst of the critical
path (bottom of the level) in order for LTC to be non-zero in
the next few rooms due to tension decay (and thus match the
non-zero tension of the DTC in those rooms).

The level of Figure 5(b) uses the inverse tension curve
(see Figure 5(f)), and contains 9 rooms in its critical path.
As expected from the DTC, the first two and the last three
rooms on the critical path do not contain monsters; instead
monsters are concentrated towards the middle of the path, in
the attempt to match the inverted V-shaped tension curve.

The level of Figure 5(c) uses a “wave” tension curve with
two peaks (see Figure 5(g)). This level has 9 rooms on its
critical path; monsters are more evenly distributed along it.
The GA clearly attempts to balance monster-based tension
escalations and de-escalations to match the DTC as closely
as possible. A particularity of the level of Figure 5(c) is the
room in the upper right corner which is inaccessible. This
indicates that the penalty value in the structure fitness is not
high enough to prevent the generation of such levels.

Finally, the level of Figure 5(d) is generated through a
linear tension curve (as depicted in Figure 5(h)) and contains
8 rooms on its critical path. Monsters are concentrated at the
end of the critical path, although monsters are also placed in
other parts of the level in order to provide non-zero tension

(a) Generated level via 5(e);
f = 0.746.

(b) Generated level via 5(f);
f = 0.925.

(c) Generated level via 5(g);
f = 0.842.

(d) Generated level via 5(h);
f = 1.019

(e) V-shaped (f) Inverse V-shaped

(g) Inverse V-wave-shaped (h) Linear

Figure 5: Generated levels (a, b, c, d) using different
designer-authored tension curves (e, f, g, h). Darker rooms
represent the players’ starting room; green triangles repre-
sent monsters; pink circles represent sidequest items and
blue squares the main quest item.

values to the rooms after it (due to tension decay). The last
room on the critical path contains no monsters, as the two
monsters in previous rooms result in a high tension in the
last room, despite the tension decay.

Suspense Sonification: For the interested reader the soni-
fication samples based on the levels depicted in Figure 5 are
available online1.

1https://goo.gl/cBPiMk



Figure 6: Evolution of the total fitness (f ) across three dif-
ferent level sizes using the linear DTC of Figure 5(h). Values
are averaged across 100 GA trials; error bars show standard
error.

Map Size Variations
To test the efficiency of Sonancia across different level
shapes and sizes, three types of level are tested: a small level
(14x14 tiles) as per previous experiments, a medium level
(20x20 tiles), and a large level (20x24 tiles). For all level
types we run Sonancia for 100 generations and 100 inde-
pendent trials; all experiments reported in this section use
the linear tension curve as depicted in Figure 5(h).

Figure 6 shows the evolution of the best map’s fitness
score across the three level sizes (averaged from 100 inde-
pendent runs). Based on the optimization behaviours of the
different map sizes, level size does not seem to affect the per-
formance and convergence of the level generation process.

Two examples of medium and large levels are shown in
Figure 7. Figure 7(a) depicts the fittest medium level with a
critical path of 8 rooms. Medium levels, in general, did not
present any structural or tension-relevant differences com-
pared to generated small rooms. Figure 7(b) shows the fittest
larger level with a critical path of 7 rooms. Larger lev-
els achieve lower fitnesses (although not significantly); they
contain fewer rooms on the critical path, which consequently
makes the tension fitness under-perform. The many tiles in
large levels allow the GA to create more rooms but at the
same time make it difficult to satisfy the critical path con-
straint (i.e. the upper limit on rooms specified in the DTC).
Moreover, the wall shift mutation has a minimal effect on the
layout of rooms in the large level, as it shifts only one row of
tiles back and forth; this explains why rooms in larger levels
are more symmetrical and rectangular.

Discussion
Initial results of Sonancia show the potential of generating
and sonifying levels based on a designer-defined progres-
sion of tension. In all situations the GA attempted to bal-
ance monster distribution and decay effects to approximate
the desired tension curve as closely as possible. Interesting
and unexpected patterns also occurred, due to the inability of
perfectly matching the LTC to the DTC; this allowed for a
degree of control while still providing variability. Future ex-
periments will explore more granular approaches, by adding

(a) Medium level;
f = 0.907

(b) Large level; f = 0.789

Figure 7: The fittest levels of different sizes generated using
the linear tension curve of Figure 5(h)

and modifying parameters for tension and decay specifically
for levels. One idea includes the placement of “soundspawn”
game objects with different tension values (depending on the
sound), which would be an addition to the current ones (1
and 0.5). This could potentially allow the GA to follow the
designer’s tension curve more closely, while adding an extra
sonification layer obtained through evolution.

Although initial results seem promising from an algorith-
mic standpoint, the current version of the system was specif-
ically created to test the feasibility of designer influenced
facet blending. However, thorough experiments with users
(i.e. players) and eventually designers will be required to test
the accuracy (with players) and usefulness (with designers)
of the system and the quality of generated content. Players’
level traversals and experienced affective states (via self re-
ports) will be collected during play so that a comparison can
be made between their personal and the designer-intended
experience. An example will be to compare levels with au-
dio assets selected through our methodology and at random.
Experiments with designers will also help in evaluating both
usability and the quality of the generated content.

While levels created by Sonancia (see Figure 7) show in-
teresting level variations, some weaknesses limit the poten-
tial effects of tension curves on generated levels. One of the
main downsides of evolutionary algorithms is the delicate
balance between giving a reward or a penalty to generated
artefacts (Michalewicz 1995). Sonancia’s evolutionary pro-
cess still struggles in creating levels that reach the total num-
ber of rooms defined by the designer. This may be caused by
the aggressive death penalty that evolved levels incur if the
total number of rooms goes over the room threshold, which
can potentially eliminate good candidates. This is also true
for inaccessible rooms, as the GA can produce highly fit lev-
els containing these due to the low penalty such rooms incur.

The biggest limitation of the sonification methods in So-
nancia is the use of specific sound recordings. While au-
dio fidelity is greatly enhanced by using human-authored
recordings, there is a degree of control that is lost when
manipulating real-time sound. While the audio assets in So-
nancia are still approximately 4 seconds long, the system
has less flexibility in influencing the sound signal in such a
way that it does not sound broken to the end-user. In sound
design this is referred to as sound granularity; more granu-
lar, very short sound snippets makes sound easier to manip-
ulate (Stevens and Raybould 2013). As playing sounds in



Figure 8: 3D render of Figure 1 in the Unity3D game engine.

real-time is memory intensive, a balance must be met and
thus the fidelity of granular sound has to be much lower
compared to studio recorded renders. A solution is the use
of proprietary tools which produce higher quality and gran-
ular sounds, but are unusable for freely distributed games
as they must run in real-time along the system. MIDI com-
positions are another option, with sonification algorithms
requesting an external service to produce musical renders
of MIDI files. Finally, background audio can be decoupled
from foreground audio (i.e. sound reacting to player ac-
tions), as the latter does not necessarily require the quality
of background audio and could be manipulated through sys-
tems such as Pure Data for more interesting soundscapes.

Another problem with the current sonification implemen-
tation is that it only accounts for the critical path. The sur-
vival horror genre often relies on players getting lost in order
to enhance suspense, rather than finding the quickest way to
the exit. Future work will adapt the current methodology for
rooms outside of the critical path, by creating a list of alter-
native paths (i.e. rooms that branch off the critical path to a
“dead-end room”) and creating a suspense curve for each al-
ternative path within the generated level, based on the mon-
ster distribution of these paths. This way the soundscape can
stay consistent even in rooms outside the critical path.

Further work on the audio allocation algorithms will take
into account different suspense models besides an inverted
tension level. For instance, the sonification of rooms out-
side the critical path must be improved, as monsters can still
be present in these sub-paths. Mixing algorithms will also
be substantially polished: the combination of dissonance,
scales, and sound effects in certain situations are current
ideas being explored. Another promising approach is audio
signal modification, for instance modifying audio signals to
add reverberation based on room size, or using low-pass fil-
ters to simulate sounds coming from adjacent rooms which
contain monsters. Volume mixing additions are also being
explored to account for monsters in neighbouring rooms and
adapt the volume until a monster is in a player’s line of sight.

Sonancia is currently being imported to the Unity3D

game engine (see Figure 8), which offers interesting out-of-
the-box tools for enhancing the current system.

The suspense value parameters of audio assets can be re-
worked in order to provide a more accurate value mapping
to the valence/arousal circumplex model (Russell 1980). To
accomplish this, a classifier (such as an artificial neural net-
work) can be trained via crowdsourcing, using human lis-
teners to accurately classify “suspense”. This will be incor-
porated in Sonancia so that sound designers can apply their
own custom recordings and have them classified, similarly
to the DARCI system (Norton, Heath, and Ventura 2010).

Finally, we intend to explore different types of interac-
tions between the generated levels and soundscape genera-
tion so that consistency between the two is further improved.
Once the system is fully imported into 3D, one idea is to dy-
namically arrange the lighting of the level so that it also fol-
lows the designer’s intended tension curve (e.g. as the player
progresses it gets darker). Another idea is to also add simple
scripted events that can potentially occur during gameplay
(e.g. a scream), which would have a higher probability of
occurring in tenser situations.

Conclusion
This paper presented improvements to the Sonancia system,
a multi-faceted level generator for the horror genre. The ad-
ditions include a level generation system that optimizes to-
wards a designer-defined tension curve, while still providing
a degree of variability. The paper also presented some initial
methodologies for creating soundscapes of generated levels
by directly using the distribution of monsters in the level’s
path from the starting player position to the goal. Several ex-
periments studied the impact of designer tension curves on
level generation and sonification, as well as the efficiency of
the GA in generating larger maps. Early results show that
levels follow patterns consistent with the designer’s tension
curves, while still maintaining slight variations.
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