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ABSTRACT

Grounded in the divergent search paradigm and inspired
by the principle of surprise for unconventional discovery
in computational creativity, this paper introduces surprise
search as a new method of evolutionary divergent search.
Surprise search is tested in two robot navigation tasks and
compared against objective-based evolutionary search and
novelty search. The key findings of this paper reveal that
surprise search is advantageous compared to the other two
search processes. It outperforms objective search and it is
as efficient as novelty search in both tasks examined. Most
importantly, surprise search is, on average, faster and more
robust in solving the navigation problem compared to ob-
jective and novelty search. Our analysis reveals that sur-
prise search explores the behavioral space more extensively
and yields higher population diversity compared to novelty
search.
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1. INTRODUCTION

The widely accepted approach in search is to design a
function that will reward solutions with respect to a par-
ticular objective that characterizes their goodness: better
solutions have higher values with respect to that objective.
In evolutionary computation (EC) the fitness function [9]
encapsulates the principle of evolutionary pressure for fit-
ting (adapting) within the environment. While it is natural
to think that measuring progress in terms of fitness [9, 22]
is the most appropriate approach towards finding a high-fit
solution, recent findings from evolutionary divergent search
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[14, 17] suggest that explicit objective (fitness) design can be
detrimental to evolutionary search. Instead, aspects of di-
vergent search beyond objectives — such as novelty — have
proven more efficient in a number of tasks such as robot
navigation [14] and locomotion [15].

As a general principle, more deceptive [9, 29] problems
challenge the design of a corresponding objective function;
in this paper we follow [31] and view deception as the in-
tuitive definition of problem hardness. The effectiveness of
a fitness function in EC is largely affected by the multi-
modality of the search space and the local optima that may
exist in the fitness landscape. In turn, a fitness function
attributes deceptive characteristics to the search space [9]
such as roughness and epistasis. On that basis, an ill-posed
fitness acts against the problem’s objective as it drives the
algorithm to undesired directions in the search space.

While search towards a particular objective is a dominant
practice within EC and machine learning at large, no explicit
objectives are considered in open-ended evolution studies
within artificial life [4]. Instead, it is typical to consider
open-ended search for e.g. survival [33, 1]. Most importantly
for this paper, a large body of research within computational
creativity and generative systems [3, 26, 32] focuses on the
creative capacity of search rather than on the objectives,
since creativity is a human-centric and highly subjective no-
tion that cannot be easily formalized. Instead of objectives,
particular dimensions of creativity such as value and nov-
elty [26] define dominant directions for the search towards
creative outcomes or unconventional solutions to problems.
According to Ritchie [26], value is the degree to which a so-
lution (or generated output from a computational creator)
is of high quality whereas novelty is the degree to which
a solution (or output) is dissimilar to existing examples.
While searching for value can be viewed as the metaphor of
fitness-based EC, searching for novelty can be viewed as the
metaphor of divergent evolutionary search towards novelty
[14, 17]. Both can be used effectively for the evolutionary
generation of highly novel, yet valuable, creative outcomes
[18].

According to other perspectives within computational cre-
ativity, however, novelty and value are not sufficient for the
discovery of unconventional solutions to problems [11]. As
novelty does not cater for the temporal aspects of discovery,
it is suggested that surprise is included as a core assess-
ment dimension of a generated solution [11]. The notion of
surprise is built on literature from cognitive science suggest-
ing that not only are humans capable of self-surprise but,
most importantly, that surprise is a core internal driver of



creativity and its final outcomes [10]. Surprise constitutes
a powerful drive for computational discovery as it incorpo-
rates predictions of an expected behavior that it attempts
to deviate from; these predictions may be based on behav-
ioral relationships in the solution space as well as historical
trends derived from the algorithm’s sampling of the domain.

We draw inspirations from the above perspectives in com-
putational creativity and we propose the use of surprise as a
new form of evolutionary divergent search. Our hypothesis is
that the search for surprise (i.e. surprise search) is beneficial
to EC as it complements our search capacities with highly
efficient and robust algorithms beyond the search for objec-
tives or mere novelty. To test our hypothesis, we introduce
the idea of surprise search and propose an evolutionary algo-
rithm that realizes it. Using the methodology and testbeds
proposed in [14], we evolve robot controllers employing neu-
roevolution of augmenting topologies (NEAT) [28] for two
maze navigation tasks and we compare the performance of
surprise search against fitness-based evolution and novelty
search. We use two performance measures for this compari-
son: efficiency (i.e. maximum fitness obtained) and robust-
ness (i.e. the number of times a problem is solved). The
key findings of the paper suggest that surprise search is as
efficient as novelty search and both algorithms, unsurpris-
ingly, outperform fitness-based search. Furthermore, sur-
prise search appears to be the most robust algorithm in the
two test-bed tasks. While both novelty and surprise search
converge to the objective significantly faster than fitness-
based search, surprise search solves the navigation problem
faster, on average, and more often than novelty search. The
experiments of this paper validate our hypothesis that sur-
prise can be beneficial as a divergent search approach and
provide evidence for its supremacy over novelty search in the
tasks examined.

2. BACKGROUND

The term deception in the context of EC was introduced
by Goldberg [8] to describe instances where highly-fit build-
ing blocks, when recombined, may guide search away from
the global optimum. Since that first mention, the notion of
deception has been refined and expanded to describe several
problems which challenge evolutionary search for a solution;
indeed Whitley argues that “the only challenging problems
are deceptive” [31]. EC-hardness is often attributed to de-
ception, as well as sampling error [19] and a rugged fitness
landscape [13]. In combinatorial optimization problems, the
fitness landscape can affect optimization when performing
neighborhood search, which is usually the case [25]. Such a
search process assumes that there is a high correlation be-
tween the fitness of neighboring points in the search space,
and that genes in the chromosome are independent of each
other. The latter assumption refers to epistasis [5] which is
a factor of GA-hardness: when epistasis is high (i.e. where
too many genes are dependent on other genes in the chro-
mosome), the algorithm searches for a unique optimal com-
bination of genes but no substantial fitness improvements
are noticed during this search [5].

Deception actively leads search away from the global op-
timum — often by converging prematurely to local optima
in the search space. To discourage this behavior, numer-
ous approaches have been proposed as surveyed by [17].
Many diversity maintenance techniques, such as speciation
[28] and niching [30] enforce local competition among sim-

ilar solutions. Localized competition allows the population
to explore multiple promising directions, discouraging pre-
mature convergence. An alternative way of exploring the
search is coevolution, where the calculation of fitness is de-
pendent on the current population [2]; competition between
individuals in the same population ideally leads to an arms
race towards better solutions and finds a better gradient
for search. However, coevolution runs the risk of causing
mediocre stalemates where all competitors perform poorly
and cannot improve, or that one competitor is so much bet-
ter than the others that no gradient can be found [7].
Novelty search [14] differs from previous approaches at
handling deceptive problems as it explicitly ignores the ob-
jective of the problem it attempts to solve. The search
methods described above provide control mechanisms, mod-
ifiers or alternate objectives which complement the gradient
search towards better solutions; in contrast, novelty search
motivates exploration of the search space by rewarding indi-
viduals which are different in the phenotypic (or behavioral)
space without considering whether they are objectively ‘bet-
ter’ than others. Novelty search is different than a ran-
dom walk, however, as it explicitly provides higher rewards
to more diverse solutions (hence promoting exploration of
the search space) and also because it maintains a memory
of the areas of the search space that it has previously ex-
plored; the latter is achieved with a novel archive of past
novel individuals, with highly novel individuals being con-
stantly added to this archive. Each individual’s novelty score
is the average distance from a number of closest neighbors
in the behavioral space; neighbors can be members of the
current population or the novel archive. The distance mea-
sure is problem-dependent and can also bias the search [14]
and thus affect the performance and behavior of the novelty
search algorithm: examples include the agents’ final posi-
tions in a two-dimensional maze solving task (as the one in
Section 5), the position of a robot’s center of mass [14], or
properties of images such as brightness and symmetry [16].

3. THE NOTION OF SURPRISE SEARCH

This section discusses the notion of surprise as a form of
divergent search. For that purpose we first attempt to define
surprise, we then compare it against the notion of novelty
and finally we discuss the dissimilarities between novelty
search and surprise search as evolutionary search methods.

3.1 What is Surprise?

The study of surprise has been central in neuroscience,
psychology, cognitive science, and to a lesser degree in com-
putational creativity and computational search. In psychol-
ogy and emotive modeling studies, surprise defines one of
Ekman’s six basic emotions [6]. Within cognitive science,
surprise has been defined as a temporal-based cognitive pro-
cess of the unexpected [20], a violation of a belief [23], a
reaction to a mismatch [20], or a response to novelty [32].
In computational creativity, surprise has been attributed to
the creative output of a computational process [11, 32].

While variant types and taxonomies of surprise have been
suggested in the literature — such as aggressive versus pas-
sive surprise [11] — we can safely derive a definition of sur-
prise that is general across all disciplines that study surprise
as a phenomenon. For the purposes of this paper we define
surprise as the deviation from the expected and we use the



notions surprise and unezxpectedness interchangeably due to
their highly interwoven nature.

3.2 Novelty vs. Surprise

Novelty and surprise are different notions by definition as
it is possible for a solution to be both novel and/or expected
to variant degrees. Following the core principles of Lehman
and Stanley [14] and Grace et al. [11], novelty is defined as
the degree to which a solution is different from prior solu-
tions to a particular problem. On the other hand, surprise is
the degree to which a solution is different from the expected
solution to a particular problem.

Expectations are naturally based on inference from past
experiences; analogously surprise is built on the temporal
model of past behaviors. Surprise is a temporal notion as
expectations are by nature temporal. Prior information is
required to predict what is expected; hence a prediction of
the expected is a necessary component for modeling surprise
computationally. By that logic, surprise can be viewed as
a temporal nmovelty process. Another interesting temporal
metaphor of the relationship between surprise and novelty
is that the first can be viewed as the time derivative of the
latter — e.g. position (novelty) and velocity (surprise).

3.3 Novelty Search vs. Surprise Search

According to Grace et al. [11], novelty and value (i.e.
objective in the context of EC) are not sufficient for the dis-
covery of unconventional solutions to problems (or creative
outputs) as novelty does not cater for the temporal aspects
of discovery. Novelty search rewards divergence from prior
behaviors [14] and provides the necessary stepping stones
toward achieving an objective. Surprise, on the other hand,
complements the search for novelty as it rewards exploration
and divergence from the expected behavior. In other words
while novelty search attempts to discover new solutions, sur-
prise search attempts to deviate from expected solutions.

Highly relevant to this study is the work on computa-
tional models of surprise for artificial agents [21]. However,
that work does not consider using a computational model of
surprise for search. Other aspects of unexpectedness such as
intrinsic motivation [24] and artificial curiosity [27] have also
been modeled. The concepts of novelty within reinforcement
learning research are also interlinked to the idea of surprise
search [12, 24]. Artificial curiosity and intrinsic motivation,
however, are not resembling the search for surprise which,
similarly to novelty search, is based on evolutionary diver-
gent search and motivated by open-ended evolution.

Inspired by the above arguments and findings in computa-
tional creativity, we view surprise for computational search
as the degree to which expectations about a solution are
violated through observation [11]. Our hypothesis is that
if modeled appropriately, surprise may enhance divergent
search and complement or even surpass the performance of
traditional forms of divergent search such as novelty. The
main findings of this paper validate our hypothesis.

4. THE SURPRISE SEARCH ALGORITHM

To realize surprise as a search mechanism we need to
model a process that rewards deviation from the expected.
We can decompose the task by first defining what an ex-
pected behavior is within search and then quantifying devia-
tion from it. These two processes express the two main com-
ponents of the surprise search algorithm described in this

section. This process yields an individual’s surprise score
which replaces any objective-driven fitness score and puts
pressure on unexpected solutions in the behavioral space.

4.1 Expected Behavior

Modeling an expected behavior requires a predictive model
built on prior behaviors of an individual or a set of individ-
uals in the population. In that process, three core questions
need to be addressed with respect to the amount of history,
model type, and locality of prediction considered.

How much history of prior behaviors (h) should
surprise search consider? We consider this to be a domain-
dependent parameter for the algorithm. Similarly to a nov-
elty archive [14], behaviors that have performed well in the
past could be included in a surprise archive.

‘What predictive model (m) should surprise search
use? Any predictive modeling approach can be used to pre-
dict a future behavior, such as a simple linear regression of a
number of points in the behavioral space, non-linear extrap-
olations, or machine learned models. Again, we consider the
predictive model, m, to be problem-dependent.

How local (k) are the behaviors surprise search
needs to consider to make a prediction? Predictions
can be based on prior compound positions in the behavioral
space for the whole population (global information), or a
number of population groups, or even considering only prior
behaviors of an individual. A parameter k determines the
level of prediction locality which can vary from 1 (all indi-
viduals are used to determine the expected behavior of the
population as a whole) to P which is the population size.

In summary, the set of expected behaviors, p, are derived
from a predictive model, m, that considers a degree of local
(or global) behavioral information (expressed by k) and de-
pends on a history of prior behaviors (expressed by h). In
its general form p is as p = m(h, k).

4.2 Deviation

To put pressure on unexpected behaviors, we need an es-
timate of the deviation of a behavior from the expected.
Following the principles of novelty search [14], this estimate
is derived from the behavior space as the average distance
to the n-nearest expected behaviors (prediction points). We
thus define that estimate as the surprise value, s for an in-
dividual 7 in the population as follows:

(i) = > duli.pi) (1

where ds is the domain-dependent measure of behavioral dif-
ference between an individual and its expected behavior, p;, ;
is the j-closest prediction point (expected behavior) to indi-
vidual 7 and n is the number of prediction points considered;
n is a problem-dependent parameter determined empirically.

4.3 Important notes

Surprise search operates similarly to novelty search with
respect to evolutionary dynamics. As surprise search consid-
ers the current generation of solutions and a set of prior be-
haviors (expressed by h) to make predictions of expected be-
havior, it maintains a temporal window of where search has
been. However, surprise search operates differently to nov-
elty search with respect to the goal: surprise maximizes de-
viation from the expected behaviors whereas novelty moves
the search towards new behaviors. This evidently creates a



new form of divergent search that considers prior behaviors
indirectly to make predictions to deviate from.

As surprise search ignores objectives, a concern could be
whether it is merely a version of random walk. Surprise
search is not a random walk as it explicitly maximizes un-
expectedness: surprise search allows for a temporal archive
of behaviors that accumulates a record of earlier positions
in the behavioral space (similarly to novelty search). Com-
parative experiments with variant random benchmark algo-
rithms in Section 5 show that surprise search traverses the
search space in a different and far more effective manner.

S. MAZE NAVIGATION TEST BED

An appropriate domain to test the performance of surprise
search is one that yields a deceptive fitness landscape, where
search for surprising behaviors can be evaluated against nov-
elty and objective search. Inspired by the comparison of
novelty versus objective search in [14], we consider the two-
dimensional maze navigation task as our test bed in this
paper. The maze navigation task is a representative decep-
tive problem due to the presence of dead-ends acting as local
optima which do not bring search closer to finding the goal
in the maze. In this section we describe the maze navigation
problem briefly and the two test bed mazes considered.

In the maze navigation task a robot (agent) controlled by
an artificial neural network (ANN) has to find a path from
a starting position to a goal position in a fixed time in a
human-authored maze. The navigation task is made harder
with the presence of more dead-ends, and by placing the
starting position far away from the goal position. Following
the perception system of [14], the robot has six range sen-
sors measuring the distance to the nearest obstacle and four
range radars that fire when the goal is within their range.
This results in 10 inputs for the robot’s ANN controller (6
range sensors and 4 radar sensors). The robot has two effec-
tors (ANN outputs) which control the robot’s movement, i.e.
whether to turn and speed up or slow down. More details
about the agent and its ANN can be found in [14].

The two mazes named medium and hard used in [14] are
considered for testing the performance of surprise search.
The “medium” maze (see Figure 1a) is moderately difficult
as an algorithm should evolve a robot able to avoid the dead-
ends existent within the maze towards finding the goal. The
“hard” maze (see Figure 1b) is more deceptive, primarily
due to the dead-end at the leftmost part of the maze; an
algorithm must search in less promising (lower-fit) areas of
the maze towards finding the global optimum. We consider
a robot successful if it manages to reach the goal within
a radius of five units at the end of an evaluation of 400
simulation steps.

6. EXPERIMENTS

The maze navigation problem is used to compare the per-
formance of surprise, novelty and objective search. Section
6.1 provides the details and parameters for all the algorithms
compared. We then compare the algorithms’ efficiency and
robustness and finally we analyze some typical generated
solutions on the behavioral and the genotypical space.

6.1 Algorithm parameters

All three algorithms use NEAT to evolve a robot controller
with the same parameters as in [14], where the maze naviga-
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Figure 1: The robot maze navigation tests that appear in
[14] as “medium’ and “hard”. For comparative purposes the
same mazes are used for all experiments in this paper. The
filled and empty circle represent the robot’s starting position
and the goal, respectively.

tion task and the mazes of Fig. 1 were introduced. Evolution
is carried on a population of 250 individuals for a maximum
of 300 generations in all experiments presented in this paper.
The NEAT algorithm uses speciation and recombination, as
described in [28]. The specific parameters used for each of
the three main algorithms compared are detailed below.

Objective search uses the agent’s proximity to the goal
as a measure of its fitness. Following [14], proximity is mea-
sured as the Euclidean distance between the goal and the
position of the robot at the end of the evaluation.

Novelty search uses the same novelty metric and pa-
rameter values as presented in [14]. In particular, the nov-
elty metric is the average distance of the robot from the
15 nearest neighboring robots among those in the current
population and in a novel archive. Distance in this case is
the Euclidean distance between two robot positions at the
end of the evaluation period; this rewards robots ending in
positions that no other robot has explored yet.

Surprise search uses the surprise metric of Equation (1)
to motivate the generation of unexpected behaviors. As with
other algorithms compared, behavior in the maze navigation
domain is expressed as the position of the robot at the end of
an evaluation. The behavioral difference ds in Equation (1)
is the Euclidean distance between the final position of the
robot and a considered prediction point, p. Note that in our
experiments we only consider the closest prediction point
to each robot position to deviate from, i.e. n = 1 in Equa-
tion (1). Following the general formulation of surprise in
Section 4.1, the prediction points are a function of a model
m that considers k local behaviors of h prior generations.
In this initial study we use the simplest possible prediction
model (m) which is a one-step linear regression of two points
(h = 2) in the behavioral space. Thus, only the two previous
generations are considered when creating prediction points
to deviate from in the current generation; in the first two
generations the algorithm performs mere random search due
to lack of prediction points. The locality (k) of behaviors
is determined by the number of behavioral clusters in the
population which is obtained by running k-means on the fi-
nal robot positions. The surprise search algorithm applies
k-means at each generation by seeding the initial configu-
ration of the k centroids with the centroids obtained in the
previous generation (this seeding process is skipped only in
the first generation). This way the algorithm is able to pair
centroids in subsequent generations and track their behav-
ioral history. Using the k pairs of centroids of the last two
generations we create k prediction points for the current gen-



eration through a simple linear projection. As mentioned in
Section 4.1, the number of clusters k is a problem-dependent
parameter obtained empirically by varying k between 10 and
P in increments of 10 and selecting the k that yields the most
maze solutions (successes); k is 200 and 100 for the medium
and hard maze experiments, respectively. The impact of
history, h, and the prediction model, m, on the algorithm’s
performance is not examined in this paper and remains open
to future studies (see Section 7).

Two more baseline algorithms are included for com-
parative purposes. Random search is a baseline proposed in
[14] which uses a uniformly-distributed random value as the
fitness function of an individual. The second baseline algo-
rithm is a variant of surprise search with random prediction
points, identified as surprise search (random). In this vari-
ant we substitute the prediction points obtained via surprise
search with a uniform random distribution, which provides
k prediction points within the maze.

To test the performance of all above mentioned algorithms
we follow the approach proposed in [34] and compare both
their efficiency and robustness in both test bed mazes. Re-
sults are collected from 50 independent evolutionary runs;
reported significance (and p values) in this paper is obtained
via two-tailed Student’s t-tests; significance is 5%.

6.2 Efficiency

Following the analysis in [14], efficiency is defined as the
mazimum fitness over time; fitness is 300 minus the Eu-
clidean distance between the final position of the robot and
the goal. Figure 2 shows the average maximum fitness across
evaluations for each algorithm for the two mazes, averaged
from 50 independent runs.

Observing the efficiency of the different algorithms in the
medium maze in Fig. 2a, it is obvious that both surprise
search and novelty search converge to the absolute maxi-
mum fitness after approximately 35,000 evaluations. While
novelty search appears to yield higher average maximum
fitness values than surprise search, this difference tends to
be insignificant. On average, novelty search obtains a fi-
nal maximum fitness of 296.18 (¢ = 1.05) while surprise
search obtains a fitness of 296.03 (¢ = 0.92); p > 0.05.
From the derived 95% confidence intervals there appears to
be a significant difference only between 19,000 and 25,000
evaluations; novelty search yields higher average maximum
fitness during this time interval. This difference is due to
the predictions of surprise search, as two consecutive gener-
ations may yield very distant cluster centroids which in turn
create predictions which are even further away. Eventually,
the population converges and consecutive generations’ cen-
troids (and predictions) are closer to each other, allowing
surprise search to solve the maze. Objective search seems
moderately efficient in approaching the goal, although it is
unable to find it in all runs; in contrast, the two baseline
algorithms have a poor efficiency and show very little im-
provement as evolution progresses. The poor efficiency of
the two baselines demonstrates that surprise search is dif-
ferent from random search and moreover that its predictive
model positively affects the search.

For the more deceptive hard maze, Fig. 2b shows that
there is no significant difference across evaluations between
surprise search and novelty search, while the other algo-
rithms’ efficiency is far lower. On average, novelty search
obtains a final maximum fitness of 296.03 (¢ = 1.55) while
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Figure 2: Efficiency (average maximum fitness) compari-
son for the two mazes of [14]. The graphs depict the evo-
lution of fitness over the number of evaluations. Values are
averaged across 50 runs of each algorithm and the error bars
represent the 95% confidence interval of the average.

surprise search obtains 295.46 (o = 5.12); p > 0.05. In such
a deceptive maze, surprise and novelty search find the solu-
tion in 49 and 48 out of 50 runs, respectively, while the other
algorithms have a much lower success rate. Of particular in-
terest is the performance of objective search, which reaches
a high fitness score around 260 quickly and then fails to im-
prove it; this is due to the deceptive nature of the maze,
where the local optima of 260 is in the left-most dead-end
in Fig. 1b which is close to the goal. In order to solve the
maze, however, the algorithm must explore far less fit areas
of the search space and thus objective search remains stuck
in the local optimum.

It is worth noting that if efficiency is alternatively viewed
as the effort it takes an algorithm to find a solution then
surprise search has a clear benefit over novelty and objec-
tive search. In the medium maze surprise search manages to
find the goal, on average, in 14,897 evaluations (o = 11,544)
which is faster than novelty (18,993; o = 14,526) and sig-
nificantly faster than objective search (48,266; o = 23,728).
Surprise search is similarly advantageous in the hard maze
as it solves the problem in 21,390 evaluations (o = 14,519)
which is faster than novelty (27,167; ¢ = 18,510) and sig-
nificantly faster than objective search (72,427; o = 10,587).
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Figure 3: Robustness comparison for the two mazes of
[14]. The graphs depict the evolution of algorithm successes
in solving the maze problem over the number of evaluations.

While the analysis of computational effort is beyond the
scope of this paper it is worth noting that, on average, sur-
prise search yields a significantly lower average CPU cost per
generation (0.285 s) compared to novelty search (0.353 s);
all experiments run in a 3 GHz workstation.

The findings from the above experiments indicate that,
in terms of maximum fitness obtained, surprise search is
comparable to novelty search and far more efficient than ob-
jective search in deceptive domains. It is also clear that, on
average, it finds the solution faster than any other algorithm.

6.3 Robustness

In this section we compare the algorithms’ robustness de-
fined as the number of successes obtained by the algorithm
across time (i.e. evaluations). Figure 3 shows the robustness
of the different algorithms for the two mazes, collected from
50 runs. Observing the successes of each algorithm on the
medium maze (see Fig. 3a), surprise search finds more so-
lutions in the first 20,000 evaluations than novelty search.
Moreover, surprise search manages to find all 50 solutions
faster than novelty search; in approx. 40,000 evaluations ver-
sus in 55,000 evaluations, respectively. Novelty search fails
to find the solution in 1 out of the 50 runs. Interestingly,
while surprise search finds more solutions in the first 20,000

evaluations, novelty search has a comparable or higher max-
imum fitness in Fig. 2a, on average; this points to the fact
that while some individuals in surprise search manage to
reach the goal, others do not get as close to it as in nov-
elty search. As noted in Section 6.2, objective search does
not manage to find solutions in 15 runs despite attaining a
relatively high maximum fitness. Finally, the two random
baseline algorithms have a similar robustness and manage,
by chance, to discover a few solutions.

On the hard maze, Fig. 3b shows that while surprise and
novelty search attain an equal number of successes in the
first 10,000 evaluations, surprise search systematically solves
the maze more times when more evaluations are consid-
ered. Once again, the superior robustness of surprise search
after 10,000 evaluations is not captured in the efficiency
graph of Fig. 2b, leading us to assume that during surprise
search individuals’ behavior changes from inferior to opti-
mal (i.e. solving the maze) more abruptly than in novelty
search, where the improvement in individuals’ performance
is smoother. Unlike the medium maze, objective search per-
forms almost as poorly as the two random baseline algo-
rithms, since the deceptive fitness drives individuals to the
dead-ends of the maze.

6.4 Analysis

To get further insight on the behavior of surprise search
and its strengths over novelty search in the more deceptive
problem (i.e. hard maze), we first discuss a number of typi-
cal examples in the behavioral space and then present some
statistics derived from the genotypic space. Objective search
is not further analyzed in this section given its evident dis-
advantages with respect to both efficiency and robustness.

6.4.1 Behavioral Space: Typical Examples

Table 1 shows pairs of typical runs (for novelty and sur-
prise search) in the hard maze which are solved after 12,500,
25,000, and 50,000 evaluations. Typical runs are shown as
heatmaps which represent the aggregated distribution of the
robots’ final positions throughout all evaluations. Moreover,
we report the entropy (H) of those positions as a measure of
the population’ spatial diversity in the maze. The heatmaps
illustrate that surprise search results in a more sparse dis-
tribution of final robot positions. The corresponding H val-
ues indicate that surprise search explores the maze better
than novelty search which is more evident in the longest
runs. While surprise search is built on the principles of nov-
elty search, it augments it by exploring the prediction space,
which means that it considers the predicted behaviors as the
points it needs to deviate from. This allows surprise search
to explore the space in an orthogonal way to novelty search,
and to diverge not from current and previously found behav-
iors (in the current population and novel archive, respec-
tively) but from expected behaviors (which may not have
been exhibited, or may never will). In the case of the de-
ceptive hard maze, this deviation from predicted behaviors
shows a better exploratory capability.

6.4.2 Genotypic Space

Table 2 contains a set of metrics that characterize the
final ANNs evolved by surprise and novelty search, which
quantify aspects of genomic complexity and genomic diver-
sity. For genomic complexity we consider the number of
connections and the number of hidden nodes of the final



Novelty Search Surprise Search

E = 50,000; H = 0.64

E =50,000; H=0.71

Table 1: Behavioral Space. Three typical successful runs
solved after 12,500, 25,000 and 50,000 evaluations (F) ob-
tained by novelty search and surprise search. Heatmaps
illustrate the aggregated numbers of final robot positions
across all evaluations. Note that white space in the maze
indicates that no robot visited that position. The entropy
(H € [0,1]) of visited positions is also reported and is cal-
culated as follows: H = (1/logC) > {(vi/V)log(vi/V)};
where v; is the number of robot visits in a position 7, V'
is the total number of visits and C' is the total number of
discretized positions (cells) considered in the maze.

. Complexity Diversity
Algorithm Connections Nodes Compatibility
Novelty 2975 (8.4) | 2.30 (1.1) | 34.35 (12.2)
Surprise 44.74 (20.4) | 3.32 (2.1) | 58.30 (29.0)

Table 2: Genotypic Space. Metrics of genomic complexity
and diversity of the final ANNs evolved using NEAT, aver-
aged across successful runs. Values in parentheses denote
standard deviations.

ANNSs evolved, while genomic diversity is measured by the
compatibility metric defined in [28]. Surprise search gener-
ates significantly more densely connected ANNs than nov-
elty search and it also evolves, on average, significantly larger
ANNS (in terms of hidden nodes) than novelty search. Most
importantly, surprise search yields a significantly higher pop-
ulation diversity, expressed by the compatibility metric [14],
than novelty search.

7. DISCUSSION AND FUTURE WORK
The key findings of this paper suggest that surprise search

yields comparable efficiency to novelty search and it out-
performs objective search. Moreover it finds the solution
faster and more often than any other algorithm considered.
The comparative advantages of surprise search over novelty
are inherent to the way the algorithm searches, attempting
to deviate from predicted unseen behaviors instead of prior
seen behaviors. The difference between the two algorithms is
manifested in both the behavioral and the genotypic space.
Surprise search is more exploratory than novelty search in
the deceptive mazes examined as it leads to higher spatial di-
versity. Spatial exploration in surprise search increases over
time, gradually increasing the search capacity of the algo-
rithm. Furthermore surprise search yields larger and denser
ANN controllers while diversifying the population more than
novelty search. In summary, the combination of higher pop-
ulation diversity, ANN connectivity and exploratory capac-
ity seems beneficial for surprise over novelty search.

The comparative analysis of surprise search against the
two random search variants investigated suggests that sur-
prise search is not random search. Clearly it outperforms
random search in efficiency and robustness. Further, the
poor performance of the surprise search variant with ran-
dom prediction points suggests that the prediction of ex-
pected behavior is beneficial for divergent search.

While this study already offers evidence for the advantages
of surprise as a form of divergent search, further work needs
to be performed. We need to further test the algorithm’s
potential within the maze navigation domain (through more
deceptive and complex environments) and in other domains
such as robot locomotion or procedural content generation.
In terms of the predictive model of expected behavior, this
paper uses a simple model of 1-step predictions via linear
regression; we can only envision that better results can be
achieved if machine learned or non-linear predicted models
are built on more prior information. In terms of deviation
from predicted points, we use the distance from the closest
prediction as the surprise score, but more nearest neighbors
can be considered in future work; moreover, deviation from
predictions can use non-linear and probabilistic methods for
a deviation function (as e.g. in [11]). Additionally, surprise
search allows for variant degrees of prediction locality, i.e. the
amount of local information considered by surprise search to
make a prediction (k in this paper). Prediction locality can
be derived from the behavioral space (as in this paper) but
also on the genotypic space. Future work will need to focus
on the effect of locality on surprise search. Finally, surprise
search as presented here requires some form of clustering
of behaviors: while k-means was employed for its simplicity
and popularity, any clustering algorithm is applicable and
comparative studies between approaches can be conducted.

8. CONCLUSIONS

This paper introduced the notion of surprise for search,
provided a general algorithm that follows the principles of
searching for surprise and tested the idea in a maze nav-
igation problem. Evidently, surprise search shows advan-
tages over other forms of evolutionary divergent search such
as novelty search and outperforms traditional fitness-based
evolution (i.e. objective search) in deceptive problems. While
it yields comparable efficiency to novelty search, it tends
to find solutions faster and more often. Detailed analysis
on the behavioral and genomic properties of surprise search
showcase that deviation from the expected behavior in the



search space results in higher exploratory capacity and be-
havior diversity. These properties, in turn, appear to be the
key benefits of surprise over novelty or objective search.
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