
Multi-segment Evolution of Dungeon Game Levels
Antonios Liapis

Institute of Digital Games, University of Malta
antonios.liapis@um.edu.mt

ABSTRACT
�is paper presents a generative technique for game levels, focusing
on expansive dungeon levels. �e proposed two-step evolutionary
process creates a high-level overview of the map, which is then
used to specify constraints and objectives on multiple constrained
optimization algorithms which generate the high-resolution seg-
ments of the map. Results show how di�erent types of segments
are possible, and how the di�erent connectivity constraints and
objectives a�ect the performance of the algorithm. �e modular
approach, which allows for a high-level speci�cation of the level
�rst and the subsequent compartmentalized generation of the �nal
map’s components, is both scalable and more computationally e�-
cient than a direct encoding, while it allows for more control and
user intervention on either level of detail.

CCS CONCEPTS
•�eory of computation→Evolutionary algorithms; •Applied
computing→ Computer games;

KEYWORDS
Level Generation, Rogue-like games, Iterative Re�ning, Constrained
Optimization

ACM Reference format:
Antonios Liapis. 2017. Multi-segment Evolution of Dungeon Game Levels.
In Proceedings of GECCO ’17, Berlin, Germany, July 15-19, 2017, 8 pages.
DOI: h�p://dx.doi.org/10.1145/3071178.3071179

1 INTRODUCTION
Evolutionary computation has been extensively used in game con-
tent generation in order to evolve puzzles, rulesets, visuals and
other types of content [21]. However, the most popular domain
for procedural content generation (PCG) within academia and the
game industry remains game level generation: this includes the
generation of indoors levels — such as dungeons in commercial
games from Rogue (Toy and Wichman 1980) to Diablo 3 (Blizzard
2012) and in academia as surveyed in [27] — and the generation
of outdoors game worlds [22] such as the galaxy of ELITE (Acorn-
so� 1984) and the earth-like maps of Civilization VI (Firaxis 2016).
Game levels cover the broadest spectrum of aesthetic and game
design choices, as all games regardless of their complexity or target

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’17, Berlin, Germany
© 2017 ACM. 978-1-4503-4920-8/17/07. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3071178.3071179

audience take place in one or more levels. To demonstrate the dif-
ferent criteria considered when tackling level generation, generated
levels for horror games prioritize a steady increase in tension from
the start of the level towards the end, both in the game industry
with Daylight (Zombie Studios 2014) and in academia with Sonan-
cia [14]. While levels for horror games primarily a�ect the player
experience via low visibility, aural or visual cues to scare players,
and labyrinthine hallways to confuse their sense of direction, other
games such as Starcra� (Blizzard 1998) focus on the multi-player
competitive aspect: level generation for such games must primarily
be concerned with player balance on the functional dimension,
such as the distance to resources [25]. In levels for single-player
story-driven experiences (e.g. Role-Playing Games), the narrative
progression more fundamentally a�ects the generation of the level
so that some locations, NPCs and enemies are encountered �rst
before the story develops further; level generation on such criteria
has also been realized both in the game industry withMoon Hunters
(Kitfox Games 2016) and in academia with Game Forge [6].

�ere has been extensive work in generating game levels, both
with carefully scripted constructive methods [19] and with arti�cial
evolution [26]. Due to its very nature, arti�cial evolution applied
to level generation requires a compact representation and well-
behaved objective functions. �is o�en limits the granularity of
the levels that can be evolved, for instance by forming impassable
regions via squares and lines [16, 25] which is ultimately unrealistic
to players. �e clever design of a representation that can create
complex levels can greatly enhance the appearance of the �nal
artifacts but also optimization performance; a�empts at evolving
grammars [20] or other rewrite rules [1] can cra� �ner details of
levels at the loss of locality for the evolutionary algorithm.

�is paper extends the literature on search-based PCG [26] by in-
troducing a two-step generative process for creating complex levels.
�e paper focuses on generating dungeon levels as a testbed, due to
their popularity in the game industry since Rogue and Diablo (Bliz-
zard 1996), but the algorithm can generate any type of top-down
level by changing tilesets and objectives. �e novelty of the pro-
posed approach lies in the representation of the game level in two
ways: as a high-level sketch of the dungeon and as a low-level high-
resolution map composed of segments generated individually. �e
dual representation of levels as missions (generated �rst) and spaces
(generated to match the mission) was �rst introduced by Dormans
[4, 5]; however, this is the �rst instance where both representations
are evolved rather than Dormans’ grammar-based generation of
missions and spaces, or in [7] where evolution was applied only
on the mission graph. �is sequential process, with the dungeon
sketch evolved �rst to guide the parameters of individual segment
generation, allows for faster and more controllable evolution as
the representation and evaluation on low-resolution sketches is
simpler and easily scalable to more expansive �nal maps. Moreover,
spli�ing the level into segments similarly lowers the computational

GECCO ’17, July 15-19, 2017, Berlin, Germany Antonios Liapis

e�ort due to the smaller size and complexity of each individual
segment, and allows the use of custom genetic mappings (i.e. em-
bryogenies) and objectives in each segment which are speci�ed
by the high-level sketch. �e paper presents how the dungeon
sketch speci�es the segments’ embryogeny [24] (based on its wall
segments and connectivity pa�erns), constraints and tile counts
(based on the high-level segment type stored in the sketch). Using
constrained optimization techniques on both the dungeon sketch
and the individual segments ensures that resulting maps are (a)
guaranteed to be playable and (b) exhibit certain designer priorities
speci�ed either as additional constraints or as objectives. While the
paper is inspired by earlier work on map sketches and their evalua-
tions [12] and the idea of iteratively re�ning levels in increasing
representational accuracy [10], this is the �rst instance where the
�nal map is segmented and evolved piece-meal, and the �rst in-
stance where the high-level sketch directly a�ects the embryogeny
and objectives of di�erent segments of the �nal map.

2 RELATEDWORK
In order to provide the necessary background for the algorithms
used in this study, this section provides a brief overview of con-
strained optimization in PCG along with a summary of work on
evolving low-resolution levels (such as this paper’s dungeon sketch)
and the objective functions for general level creation.

2.1 Constrained Search-based PCG
As noted in the introduction, evolutionary computation has of-
ten been used within academia to generate game levels under the
general principles of search-based PCG [26]. Since levels need to
ful�ll some playability criteria (e.g. a puzzle game must be solv-
able and a dungeon must have a path from entrance to exit), many
search-based level generators somehow constrain the results to
only show playable (i.e. feasible) content. While the naive solution
is to assign the lowest �tness score to unplayable levels, in evolu-
tionary computation this has been argued against [15] as it leads to
a loss of important information and can lead to random search if no
feasible individuals exist in the initial population. Other solutions
include penalties on the �tness scores of infeasible individuals [3],
which has been used in the level generator of [17]. Another alterna-
tive is to co-evolve two populations, one with feasible individuals
and another with infeasible individuals [8]: this feasible-infeasible
two-population genetic algorithm (FI-2pop GA) evolves infeasible
individuals towards minimizing their distance to the feasible space
and transfers feasible o�spring of infeasible individuals to the fea-
sible population and vice versa. �e FI-2pop GA has been used
extensively for level generation [12, 23] — also in this paper — as
well as for generating game music [18] and art assets [9].

2.2 Evolution of Map Sketches
�is work builds on the general level generation framework intro-
duced in [12], which uses constrained optimization to evolve simple
game levels namedmap sketches. Amap sketch is a two-dimensional
low-resolution representation of a �nal game level. Map sketches
include passable and impassable tiles as well as the minimal set
of game-speci�c tiles which su�ce to de�ne the functionality of a
game or game genre: for instance, real-time strategy game-speci�c

tiles are player base tiles and resource tiles while for shooter games
that would be team spawn points, weapon and healthpack tiles [12].
Due to the abstract representation both in terms of map size and
tile variety, these map sketches can be evolved (and evaluated) in
straightforward ways.

Genotypically, map sketches are represented directly, as an array
of integers where each integer is the type of one tile in the level.
Map sketches can be recombined via 2-point crossover (swapping
areas of the level of two parents) or mutated by adding or removing
game-speci�c tiles or by swapping the types of adjacent tiles. Due
to playability constraints, evolution is carried out via the FI-2pop
constrained optimization method: infeasible individuals evolve to
minimize an infeasible �tness which evaluates their distance from
feasibility and can have multiple criteria (i.e. objectives), while
feasible individuals evolve to maximize several general evaluations
of level quality discussed below.

�e evaluation of map sketches, therefore, is on the distance
to playability for infeasible sketches and on the level’s quality for
feasible ones. Primarily, constraints test whether all game-speci�c
tiles are connected with each other via passable paths and calculate
distance to feasibility based on the number of disconnected game-
speci�c tiles. Other constraints such as on the number of tiles of
one type can also be introduced: there, the distance to feasibility is
the di�erence in the number of tiles of this type from the designer-
de�ned lower or upper bound. For feasible levels, there is a general
framework for evaluating a number of level pa�erns inspired by
the notions of exploration, safety and balance [2]. �e exploration
metric from tile i to a tile j is the ratio of total passable tiles which
are covered when a �ood �ll algorithm starts from i and stops when
j is covered. �e safety metric of tile j to tile i gives positive values
proportional to the ratio of distance between tiles i and j over the
distance between j and the closest other tile in the set that i belongs
to (if i is not the closest in its set, then safety is 0). Balance is
evaluated based on the equality of scores in exploration or safety
between tiles of the same set. �e objective functions derived from
these concepts are summarized below and visualized in Fig. 2, while
details of their mathematical formulations can be found in [12]:

Exploration as fexp (SN) which evaluates the e�ort made to
discover tiles in the set SN starting from other tiles in the same
set, and its balance dimension as bexp (SN), i.e. if all tiles in SN are
equally di�cult to �nd from each other.

Safe areas as farea (SN)which evaluates the number of passable
tiles much closer to one tile in the set of SN than other tiles in the
same set, and its balance dimension as barea (SN), i.e. if tiles in SN
have similar-sized safe areas.

Strategic resource control as fsaf (SN , SM) which evaluates
whether tiles in the set SN are much closer to tiles in the set of SM
than other tiles in SN , and its balance dimension as bsaf (SN , SM),
i.e. whether each tile in SN has equal nearby tiles in SM .

3 METHODOLOGY
�e core of this paper is the framework where levels can be repre-
sented in a high-level way, and then each segment thereof can be
further re�ned via evolution and be re-inserted into the whole to
provide a high-resolution playable level. �is iterative evolution-
ary process is summarized in Figure 1. Focusing on the dungeon

Multi-segment Evolution of Dungeon Game Levels GECCO ’17, July 15-19, 2017, Berlin, Germany

Figure 1: �e generative pipeline used in this paper: the
dungeon sketch is evolved �rst towards a speci�c objective.
Each tile on the dungeon sketch, and its connectivity with
adjacent tiles, is used to de�ne the embryogeny, constraints
and objectives of each segment which is evolved piecemeal.
Once all segments are evolved, they are combined together
based on the dungeon sketch to create the �nal dungeon.

generation domain, the sections below describe the tilesets used for
each level of detail (the high-level dungeon sketch and the low-level
dungeon segment) and the objectives and constraints for evolving
levels in both levels of detail. It should be noted that in this paper,
the term embryogeny [24] speci�cally refers to each segment’s phe-
notypic representation as di�erent connectivity constraints require
the placement of speci�c tiles (connections, walls) on the edges of
the segment, which can not be modi�ed via evolution.

3.1 �e Dungeon Sketch
�e dungeon sketch borrows heavily from the concept of a map
sketch discussed in Section 2.2: it is a high-level representation of
the dungeon which primarily de�nes the connectivity of di�erent
segments (via the introduction of impassable segments) and sec-
ondarily the content of the passable segments. Each tile on the
dungeon sketch represents a dungeon segment in the �nal map.
�e types of segments are shown in Table 1; each segment type
has di�erent parameters and objectives in the segment evolution
process detailed in Section 3.2. Simple and exit segments have
a few monsters and treasures, empty segments are passable but
have no monsters or treasures, and wall segments are completely
impassable1. High and sparse challenge segments contain more
monsters, while high and sparse reward segments contain more
treasure; high challenge and high reward segments contain only
monsters and treasures respectively.

In order to evolve the dungeon sketches, they are represented
as a 2D array of integers and are optimized via the FI-2pop GA
[8] to (a) minimize the distance to feasibility for unplayable dun-
geon sketches and (b) improve the quality of playable dungeon
sketches. Feasibility consists of the following constraints: all seg-
ment except empty and walls must be connected to each other via
passable paths, there must be exactly two exit segments, two high
1Wall segments consist entirely of wall tiles so they do not need to be evolved.

E Empty # Wall
S Simple X Exit
C High Challenge c Sparse Challenge
R High Reward r Sparse Reward

Table 1: Types of segments appearing in the dungeon sketch,
and their notation.

challenge segments and two high reward segments (otherwise the
dungeon is too di�cult or too easy). �e �tness function for the
playable dungeon sketches is a sum of several �tness dimensions
on exploration between exits (ensuring that it is di�cult to �nd an
exit when starting from the other one), on area distribution of non-
empty, non-simple segments, on safety of high reward tiles to high
challenge tiles (ensuring that those tile types will be close together)
and on their balance counterparts. �is �tness is formalized below:

FO =farea ({X ,C, c,R, r }) + barea ({X ,C, c,R, r })
+ fexp (X) + bexp (X) + fsaf (C,R) + bsaf (C,R)

(1)

Evolution is carried out via �tness-proportionate roule�e wheel
selection, and selected parents can mutate (1-parent mutation) with
a 10% chance or else recombine via 2-point crossover to create two
o�spring which also have a 10% chance of mutating. Initial individu-
als have empty or impassable tiles, and mutation can change empty
tiles into C, c, R or r with a 2% chance and into walls or simple tiles
with a 10% chance2. While feasible o�spring of infeasible parents
move to the feasible population, to ensure that there is a large fea-
sible population for an e�cient optimization process the o�spring
boost [13] is applied: if the feasible population is smaller than the
infeasible one, the number of o�spring from feasible parents is
increased to half the total population with a relevant decrease in
the infeasible population.

3.2 Dungeon Segments
As its name suggests, a dungeon segment is a piece of the dungeon
(and a tile of the high-level dungeon sketch). As part of the whole
dungeon, the segment needs to obey connectivity requirements
with its adjacent segments. Moreover, as the lower-level segments
need to specify the distribution of monsters and treasures in the
level, the high-level directives of the dungeon sketch are used to
ascertain the number of game objects in each segment as well as
the objectives it evolves towards. �e same naming convention
as in Table 1 is used to describe the segments. Based on Table 2,
segments have a set of possible tile types; among these tile types,
connection tiles are used to link di�erent segments together in the
full map. High and sparse challenge segments have 3 to 5 monsters,
while other segments have 2 monsters except for empty and high
reward segments which have no monsters. Similarly, high and
sparse reward segments have 3 to 5 treasures, while other segments
have 1 or 2 treasures apart from empty and high challenge segments
which have no treasures. Only exit segments have an exit tile.

As dungeon segments must be connected to the rest of the dun-
geon as per the dungeon sketch, the representation of each dungeon

2�e opposite is also true, so any wall tile has a 10% chance to mutate back to an empty
tile, for instance.

GECCO ’17, July 15-19, 2017, Berlin, Germany Antonios Liapis

. Empty # Wall
n Connection x Exit
m Monster t Treasure

Table 2: Tile types and notations in the dungeon segment.

(a) (b) (c) (d)

Figure 2: Fitness functions applied to the dungeon segment
of Fig. 2a. �e top-most treasure (circle) has a high safety
score to its nearby monster (triangle) as that monster is
much closer to it than other monsters; the other treasure
has a low safety score as it is equally close to two monsters.
Safe areas (with a safety score above 0.35) for monsters and
treasure tiles are shown in Fig. 2b; the total safe area cover-
age evaluates fsaf . Exploration is calculated via a �ood �ll
algorithm starting from the top connection tile until the bot-
tom connection tile is reached (Fig. 2c) and from bottom to
top connection (Fig. 2d); the average explored area from all
connections to all connections evaluates fexp . In this level,
the safe areas are not equal in size, nor is the exploration
from one connection to the other (due to more winding cor-
ridors near the bottom connection); this is assessed by the
balance dimensions barea and bexp respectively.

segment includes “frozen” tiles which are speci�ed in the initial pop-
ulation and can not be modi�ed during evolution. �e frozen tiles
are on the edge of the segment and de�ne wall areas and connec-
tion tiles. Fig. 3 shows examples of frozen tiles in di�erent segment
layouts: 1-neighbor segments (Fig. 3a) have only one neighboring
passable segment in the dungeon sketch (upwards), 2-neighbor
segments (Fig. 3b) have two (downwards and upwards), 8-neighbor
segments (Fig. 3d) represent areas which are fully surrounded by
passable segments, etc. While connection or wall tiles can not be
changed as they are “frozen”, empty tiles along the segments’ edges
can be mutated into wall tiles or any other tile, or recombined.

De�ning constraints and goals for each type of dungeon segment
greatly depends on its type, de�ned by the dungeon sketch. All seg-
ments have constraints that all game objects (monsters, treasures,
exits) are connected via passable paths; all segments also have con-
straints on the number of monsters, treasure, or exit tiles they can
have. Another constraint for segments with one or more monsters
is that those monsters block paths to treasure and exit tiles of this
segment, i.e. there is no path between any of those tiles and any
connection tile if monster tiles are treated as impassable. If such a
path exists, the number of connected game objects is added to the
distance function which the infeasible population of the FI-2pop GA
a�empts to minimize. For the �tness function of playable segments,
the main axes are (a) the area distribution of treasures and mon-
sters (see Fig. 2b), as farea ({m, t}) and its balance barea ({m, t});

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3: Frozen tiles when initializing the representation of
segments with di�erent connectivity constraints based on
the layout of the dungeon sketch. Black tiles are impassable
walls andmagenta tiles are connections: only those tiles are
frozen and can not be changed, while empty tiles on the seg-
ments’ edges can be changed and mutated normally.

Segment type
Dimension E S X C c R r

farea ({m, t}) 0 0 0 -1 1 -1 1
barea ({m, t}) 0 1 1 -1 1 1 1
fsaf (t ,m) 0 0 0 0 -1 0 1
bsaf (t ,m) 0 1 0 1 1 0 1
fexp ({n,x}) 1 1 1 1 1 1 1
bexp ({n,x}) 0 1 1 1 1 1 1

Table 3: Fitnessweights for the di�erent segment types spec-
i�ed by the dungeon sketch (see Table 1).

(b) the safety of treasures with respect to monsters, as fsaf (t ,m)
and its balance bsaf (t ,m), (c) the exploration between connection
or exit tiles (see Fig. 2c–2d), thus ensuring that there is no straight
line from one connection (or exit) to the next, as fexp ({n,x}) and
its balance bexp ({n,x}). �ese are combined as a weighted sum
di�erently from one segment type to the next as shown in Table
3. Segments are evolved with the same genetic process and param-
eters as the dungeon sketch (see Section 3.1); mutation has a 5%
chance of changing each empty tile into a monster, treasure or wall
(and vice versa).

4 EXPERIMENTS
In order to evaluate a full dungeon generated by the process of
Fig. 1, it is necessary to �rst evaluate how its constituent parts (the
dungeon segments) fare in the evolutionary process. Section 4.1
explores how di�erent objectives and di�erent embryogenies for
dungeon segments a�ect optimization and the appearance of the
�nal results. Section 4.2 demonstrates how the segments can be
combined based on the directions of an evolved dungeon sketch.

4.1 Results of Dungeon Segment Evolution
Segments di�erentiate themselves based on their connectivity re-
quirements with adjacent segments and their feasible and infeasible
�tness functions which depend on the tile of the dungeon sketch.
Fully exploring all possible connectivity pa�erns is not possible
in this paper, so an indicative sample of the possible segment lay-
outs will be tested: a dead-end with one connection (see Fig. 3a),
a straight corridor with 2 connections (see Fig. 3b), a corner of an
open-space area with 3 connections (see Fig. 3f) and �nally a fully
open area with 8 connections to all adjacent tiles (see Fig. 3d). Each

Multi-segment Evolution of Dungeon Game Levels GECCO ’17, July 15-19, 2017, Berlin, Germany

Connections
Type 1 2 3 8
E 1.00±0.00 1.00±0.00 0.99±0.00 0.98±0.00
S 2.95±0.02 3.55±0.14 2.96±0.08 2.88±0.14
X 3.56±0.06 3.39±0.15 3.06±0.09 3.34±0.21
R 1.91±0.00 2.84±0.01 2.41±0.02 2.56±0.01
r 3.79±0.04 4.51±0.10 3.42±0.09 3.70±0.26
C 0.38±0.01 1.32±0.01 1.03±0.03 1.08±0.01
c 3.23±0.03 3.79±0.07 3.26±0.04 3.26±0.09

Table 4: Fitness scores of the best segment for di�erent seg-
ment types. Results are averaged from feasible runs among
100 runs, along with the 95% con�dence interval.

Figure 4: Runs (out of 400 in total) with at least one feasible
result. �e runs are split by segments with 1 or 2 connec-
tions, a corner (3), or entirely open (8).

of the segment types of Table 1 are evolved using these four lay-
outs, for 100 evolutionary runs each. Each evolutionary run uses a
total population of 50 individuals (both feasible and infeasible) and
runs for 20 generations. �e number of generations is purposefully
low as the generator should create multiple segments for a single
dungeon sketch so speedy evolution is a priority.

4.1.1 Performance Optimization. Since the di�erent segment
types have di�erent �tnesses, it makes sense to compare the �tness
scores for the same segment type but with di�erent embryogenies.
Table 4 shows the �tness scores of all segment types and embryo-
genies, averaged from those runs that resulted in feasible segments
among 100 runs. Comparing only within the same segment type,
we observe that in most cases the 2-connection corridor reaches the
highest �tness from other embryogenies (signi�cantly so in R, r, C,
c, S via the Student’s t-test at 5% signi�cance level and the Bonfer-
roni correction), followed by either 8-connection or 3-connection
segments. Based also on the discussion of sample results in Section
4.1.3, a reason for this high �tness is the exploration dimension,
fexp ({n,x}); it is easier to create a winding path between two con-
nections, especially when they are on opposite sides of the segment
(as in Fig. 3b), than among 8 nearby connections (as in Fig. 3d).

4.1.2 Constraint Satisfaction. One of the most important dif-
ferences when using di�erent embryogenies and objectives was
their ability to handle constraints: Fig. 4 shows the number of runs
among 100 per embryogeny examined which result in at least one
feasible result. In general, segment types which did not have both
monsters and treasures (E, C, R) were quick to �nd feasible individu-
als; however, for other segment types the constraint that monsters
must block paths to treasure resulted in many runs not having even

E S X R r C c

1

2

3

8

Figure 5: Fittest evolved dungeon segments with 1 or 2 con-
nections, a corner or entirely open (see Fig. 3).

one feasible result within 20 generations. Especially problematic
were segments with many treasures and few monsters (r) or with
an exit which should also be blocked (X). Moreover, 2-connection
corridors were more challenged in satisfying the connectivity and
blocking constraints than other embryogenies since the two connec-
tions are far away from each other (and could be easily accidentally
blocked o� via mutation), while the blocking monsters requirement
can only be satis�ed if the wall tiles form niches with a monster in
front; these constraints dictate a rather speci�c level pa�ern (see
Figure 5) and limit the feasible search space that can be explored.

4.1.3 Level Pa�erns of Evolved Segments. Figure 5 shows the
overall ��est segments in the �nal population for the di�erent
segment types and embryogenies, a�er post-processing to remove
areas not accessible from connection tiles (those were always empty
tiles) and smoothen wall sections to create curvier forms. Walls
are drawn in a darker color with diagonal hatching, treasures as
orange circles, monsters as red triangles and exits as gray squares.

Fig. 5 highlights the di�erences between segment types: exit tiles
are only present in X segment types, game-speci�c tiles are absent
in empty segments, high challenge segments have no treasures
and high reward segments have no monsters. Moreover, sparse
reward segments (r) have more treasures than other segments
(except R) while sparse challenge (c) segments have more monsters
(except C). Constraints described in Section 3.2 are satis�ed: all
connection tiles are connected and all treasures are guarded by
one or more monsters which are usually placed on choke points
formed by neighboring wall segments: this is especially obvious in
the 2-connection r segment where the monsters are placed at both
entrances of the segment, adjacent to the connection tiles. Exit
tiles are always guarded as well: in the 1-connection X segment, for
example, heroes coming through this exit must �ght the monsters
at the segment’s edge in order to explore the rest of the dungeon.

In terms of the pa�erns speci�ed by the feasible �tness di-
mensions, results are less coherent. All segments of Fig. 5 have
labyrinthine corridors as most of them are optimal on exploration,
fexp ({n,x}). �e pa�ern that monsters and treasures are dispersed,
farea ({m, t}), is prominent in some cases of r and c segments,

GECCO ’17, July 15-19, 2017, Berlin, Germany Antonios Liapis

Figure 6: Scatter plot of the accessible passable areas in the
segments, and their tiles’ average branching factor, grouped
by segment type or connections. Data is collected from 100
runs, and error bars show the 95% con�dence intervals.

which explicitly reward it; when not targeted as an objective, mon-
sters are o�en placed side by side (and next to treasures) to block ad-
jacent choke points, e.g. inmost X segments. When the farea ({m, t})
objective receives a negative weight, results consistently place trea-
sures or monsters adjacent to each other (especially in R but also in
C segments). Finally, the resource control requirement of fsaf (t ,m)
can be gleaned in r segments where treasures are adjacent to mon-
sters, but it is highly inconsistent since monsters are near each other
(resulting in lower safety). Due to the highly constrained search
space (especially for 2-connection segments) and the multiple com-
bined objectives which are likely easier to optimize than fsaf (t ,m),
it seems that the la�er remains sub-optimal in most cases.

�is qualitative analysis can be substantiated via several level
metrics: this paper focuses on the number of accessible tiles to
any connection (measuring how “empty” segments are) and the
average branching factor of those accessible tiles (measuring how
“winding” pathways are). Figure 6 shows a sca�er plot of those two
metrics on each segment type and embryogeny examined: values
are averaged from 100 evolutionary runs and the error bars show
the 95% con�dence interval on either axis. Unsurprisingly, the open-
space segments with 8 connections have more accessible tiles, and
the number of accessible tiles drops proportionately with 3, 2 and 1
connections. Since open-space segments have 8 connections and
no “frozen” impassable edge tiles, they require more empty space
to ensure that everything is connected. On the other hand, empty
segments always have fewer accessible tiles as they do not need to
connect any tiles except connections. Another interesting �nding
is that for less than 8 connections, r tiles have a low branching
factor as they need to create more crannies for the many rewards
to be stashed in, and choke points for monsters to guard.

4.2 Sample Full Dungeon
In order to assess how the multiple components (sketch and seg-
ment evolution) work together, Figure 7 shows a sample dungeon
evolved via this two-step process. �e dungeon is generated based
on a high-level dungeon sketch of 6 by 6 tiles (see Fig. 7a), which
evolved for 20 generations using a population of 50 individuals
(including feasible and infeasible individuals). Fig. 7a shows the
best dungeon sketch from 100 runs, which is re�ned into the full

(a) Sketch text �le

(b) Sketch connectivity (c) Full dungeon

Figure 7: Sample evolved sketch and the high-resolution
map evolved based on it.

dungeon of Fig. 7c by evolving custom segments using the same pa-
rameters as in Section 4.1: evolution of each segment is re-run until
a feasible one is found. Finally, post-processing removes empty
tiles that are not connected to any exit tiles in the �nal dungeon,
and the walls are smoothened. �e symbols of the �nal dungeon
are the same as those described in Section 4.1.3.

�e pa�erns of the dungeon sketch in Fig. 7a re�ect the objectives
of Eq. (1). �e exploration �tness (fexp) is nearly optimal, as the
two exits are on opposites sides of the dungeon, connected via
a winding corridor acting as a chokepoint. �e resource control
�tness (fsaf) is also high, as each high challenge segment is adjacent
to a high reward segment (and these pairs of segments are far away
from each other as they are on opposite sides of the dungeon).
On the other hand, the safe areas around challenge (C, c), reward
(R, r) and exit segments are few, since many of these segments
are adjacent to each other: therefore, the safe area �tness (farea)
is fairly low. Its optimization seems to have been dominated by
the other, easier to optimize �tnesses combined in the weighted
sum of eq. (1). �is is a consistent �nding in all 100 runs, as on
average the best evolved dungeon sketch per run had farea scores
as signi�cantly lowest, with fsaf also being signi�cantly lower
than the remaining �tnesses; however, balance dimensions (bsaf ,
barea , bexp) and exploration (fexp) were nearly optimal in all runs.

5 DISCUSSION
Experiments in this paper primarily demonstrated how di�erent
connectivity requirements of dungeon segments, which in turn are
transformed into custom embryogenies for evolution, a�ect the
performance of the constrained optimization algorithm. Layouts
such as straight corridors with 2 connections are more di�cult
to evolve segments for, due to the constraint that monsters block
paths from connections to treasures; this obviously depends on the
number of monsters and treasures in each segment. In general, the
combination of di�erent objectives — with di�erent weights — and
the di�erent connectivity requirements can greatly a�ect the perfor-
mance of the optimizer and the appearance of resulting segments,
as discussed in Section 4.1.3. On the one hand, this demonstrates

Multi-segment Evolution of Dungeon Game Levels GECCO ’17, July 15-19, 2017, Berlin, Germany

Figure 8: Dungeon created from the sketch of Fig. 7a, with
segments of 9 by 5 tiles.

Figure 9: Hand-authored sketch (above)with escalating chal-
lenge, and generated dungeon (below).

that the algorithm as presented here is able to create a broad range
of segment pa�erns, introducing the necessary variety to a dungeon
level while still obeying the designer’s constraints on playability
(i.e. that all game-speci�c tiles are connected) and challenge (i.e.
that all treasures are guarded by monsters). On the other hand,
the di�culty in discovering any feasible results can slow down the
generative process, as multiple evolutionary trials are needed for
corridor and junction segments when generating the dungeon of
Fig. 7. �is can be addressed at the parameter level (by e.g. increas-
ing the number of generations or the size of the population) or at
the game design level (by e.g. increasing the number of monster
tiles so that it is easier for them to block paths). More interestingly,
however, improvements can look into the genetic operators to en-
sure, for instance, that a repair function moves monsters into choke
points (i.e. tiles with a branching factor of 2) thus increasing the
chance that they block paths. Another fundamental improvement
can be in the way the infeasible population searches to minimize
distance from feasibility. While currently all constraints’ distances
are added together, a multi-objective approach can be applied to
ensure, hierarchically, playability constraints (i.e. paths between
connections and all game-speci�c tiles) and then only if that is the
case a�empt to ensure that monsters block treasures. �is could
even be done iteratively, for instance introducing the more chal-
lenging blocking monster constraint (which does not strictly a�ect
playability) a�er the �rst individual is found which satis�es pure
connectivity constraints. A multi-objective approach could also
be applied to the feasible population, thus ensuring that not only
the exploration objective is optimized (which happened both when
evolving segments in Fig. 5 and the sketch in Fig. 7) but also other
objectives which were less successful such as the safe areas metric.

�e bene�ts of compartmentalizing the generative process into
a high-level dungeon sketch and low-level dungeon segments can
be bene�cial in many di�erent situations. As the most straightfor-
ward application, the same dungeon sketch can be used to generate
multiple full dungeons which are to a degree di�erent (e.g. could
have di�erent pathways or number of monsters) while still obeying

(a) Distance from the top-le� X tile
(saturated tiles are more distant).

(b) Safety of tiles to the top-le� C tile
(green) and the top-right C tile (ma-
genta). Saturated tiles are safer.

Figure 10: Metrics that evaluate the sketch of Fig. 7a can
be used to modify the monsters’ challenge in each segment
based on its distance from the top-le� exit in Fig. 10a, or to
theme monsters based on the safety of segments to the two
C segments in Fig. 10b. For instance, the greener the tile in
Fig. 10b, the more likely a monster in that segment is a gob-
lin; the more magenta the tile, the more likely it is undead.

the same high-level pa�erns of the sketch. Moreover, di�erent
dungeons can be created by varying the size of the dungeon seg-
ments; Fig. 8 shows a smaller, narrower dungeon evolved from the
dungeon sketch of Fig. 7a but with segments of 9 by 5 tiles. More
interestingly, any technique can be used to create the low-level dun-
geon sketch, including other generative algorithms but also human
intervention. Since the compact dungeon sketch is stored as a text
�le (as seen in Fig. 7a), a designer can easily create a custom sketch,
which does not need to meet the sketch generator’s constraints: an
example is shown in Fig. 9 where a custom dungeon is created from
a text �le with only one exit and an increasing challenge level before
the rewards are reaped at the end; the victorious heroes will leave
the dungeon from the same exit they entered from. Beyond simple
text editing, however, a user interface which allows designers to
quickly dra� the high-level dungeon sketch can be very bene�cial.
Via such an interface, the evaluations presented in Section 3.1 can
be visualized to provide real-time feedback to the designer while
the evolutionary algorithms can be used to create variations of the
user’s current sketch in a similar fashion to the suggestions in the
Sentient Sketchbook design tool [11].

�is paper focused on the analysis of the currently available
segment types, in order to keep objective functions consistent and
a small set of tile types (e.g. generic treasures and monsters). How-
ever, there are several extensions to the generator which can enrich
its outcomes with more or less e�ort. An obvious extension is the
introduction of di�erent types of monsters popular in Role-Playing
Games (e.g. goblins, dragonkin, undead, etc.) and treasures (from
single-use powerups such as potions to permanent boosts from
weapons or armor). Choosing where to place each type of mon-
ster and treasure can be based on the dungeon sketch alone in
several straightforward ways. �e �rst way is to designate one
of the exit tiles as the entrance to the dungeon, and to calculate
the distance of each tile in the dungeon from the entrance (see
Fig. 10a). Tiles further away from the entrance have monsters of
a higher challenge rating (e.g. replacing generic monsters with
easy-to-kill goblins near the entrance and powerful dragonkin far
away from this entrance) and richer rewards. �e second way is
to identify “rooms” of highly connected segments (e.g. adjacent

GECCO ’17, July 15-19, 2017, Berlin, Germany Antonios Liapis

segments sharing 2 or more connections) and theme those with
speci�c monsters and treasure (e.g. the goblin armory). Finally,
the safe areas metric (used to calculate farea) to high challenge
segments can act as a “boost” to segments’ monster di�culty and
reward: segments around high-challenge (C) segments will have
stronger monsters and richer treasure, but not as strong as those
within a C segment itself (see Fig. 10b). Any of these methods for
segment variety can also be used to adapt the weight of �tness
dimensions for segment evolution (e.g. segments near a C segment
put less weight on exploration but double the weight on balance of
safe areas). On the other hand, moving the generated dungeons to
a playable game can allow audio-visual cues to enhance segment
variety: for instance, empty segments can have less ambient light
which makes navigation more di�cult despite the fact that their
exploration score is not much di�erent. A high-challenge segment
can be foreshadowed in nearby segments via growls, based on the
safe areas metric (see Fig. 10b), while the high-level structure of
the dungeon sketch can be presented to the player as a dialog line
of a quest-giver NPC, hinting at which areas are safe and which
paths should not be taken as they lead nowhere.

6 CONCLUSION
�is paper introduced a method for iteratively re�ning game levels
using the concept of sketches at di�erent levels of detail. Firstly, a
dungeon sketch is evolved to satisfy connectivity constraints be-
tween the two ends (exits) of a dungeon, as well as maximize the
exploration e�ort of a player and the risk/reward options they have
to take by placing high reward tiles near high challenge tiles. �is
dungeon sketch is then re�ned through a multitude of higher-detail
dungeon segments: the dungeon sketch controls the connectivity
constraints of each segment, which translate into a custom em-
bryogeny, as well as the objective functions and constraints (e.g.
monsters blocking access to treasure) when evolving these seg-
ments. Experiments showed that a feasible-infeasible 2-population
genetic algorithm is able to evolve segments according to all those
criteria, although the di�erent embryogenies and included tiles
(e.g. monsters, treasure) resulted in more or less di�cult constraint
satisfaction tasks. �is work can be further extended by adding
more types of segments, improving the optimization process with
multi-objective approaches on both the feasible and the infeasible
population, and by improving the variety of tile types based on
metrics or via the aesthetics of a game built around this research.

7 ACKNOWLEDGMENTS
�is project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agree-
ment No 693150.

REFERENCES
[1] Daniel Ashlock and Cameron McGuinness. 2013. Landscape automata for search

based procedural content generation. In Proceedings of the IEEE Computational
Intelligence in Games Conference.

[2] Sta�an Björk and Jussi Holopainen. 2004. Pa�erns in Game Design. Charles River
Media.

[3] Carlos A. Coello Coello. 2010. Constraint-handling techniques used with evolu-
tionary algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference. ACM.

[4] Joris Dormans. 2010. Adventures in level design: generating missions and spaces
for action adventure games. In Proceedings of the FDG Workshop on Procedural
Content Generation in Games.

[5] Joris Dormans and Sander C. J. Bakkes. 2011. Generating missions and spaces for
adaptable play experiences. IEEE Transactions on Computational Intelligence and
AI in Games. Special Issue on Procedural Content Generation 3, 3 (2011), 216–228.

[6] Ken Hartsook, Alexander Zook, Sauvik Das, and Mark O. Riedl. 2011. Toward
Supporting Stories with Procedurally Generated Game Worlds. In Proceedings of
the IEEE Conference on Computational Intelligence in Games.

[7] Daniel Karavolos, Antonios Liapis, and Georgios N. Yannakakis. 2016. Evolv-
ing Missions to Create Game Spaces. In Proceedings of the IEEE Conference on
Computational Intelligence and Games (CIG).

[8] Steven Orla Kimbrough, Gary J. Koehler, Ming Lu, and David Harlan Wood.
2008. On a Feasible-Infeasible Two-Population (FI-2Pop) genetic algorithm for
constrained optimization: Distance tracing and no free lunch. European Journal
of Operational Research 190, 2 (2008), 310–327.

[9] Antonios Liapis. 2016. Exploring the Visual Styles of Arcade Game Assets. In
Proceedings of Evolutionary and Biologically Inspired Music, Sound, Art and Design
(EvoMusArt). Springer.

[10] Antonios Liapis and Georgios N. Yannakakis. 2015. Re�ning the Paradigm
of Sketching in AI-Based Level Design. In Proceedings of the AAAI Arti�cial
Intelligence for Interactive Digital Entertainment Conference.

[11] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. 2013. Sentient
Sketchbook: Computer-Aided Game Level Authoring. In Proceedings of the 8th
Conference on the Foundations of Digital Games.

[12] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. 2013. Towards a
Generic Method of Evaluating Game Levels. In Proceedings of the AAAI Arti�cial
Intelligence for Interactive Digital Entertainment Conference.

[13] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. 2015. Constrained
Novelty Search: A Study on Game Content Generation. Evolutionary Computa-
tion 23, 1 (2015), 101–129.

[14] Phil Lopes, Antonios Liapis, and Georgios N. Yannakakis. 2016. Framing Ten-
sion for Game Generation. In Proceedings of the International Conference on
Computational Creativity.

[15] Zbigniew Michalewicz. 1995. Do Not Kill Unfeasible Individuals. In Proceedings
of the Fourth Intelligent Information Systems Workshop.

[16] Diego Perez, Julian Togelius, Spyridon Samothrakis, Philipp Rohlfshagen, and
Simon M. Lucas. 2014. Automated map generation for the physical traveling
salesman problem. IEEE Transactions on Evolutionary Computation 18, 5 (2014).

[17] Mike Preuss, Antonios Liapis, and Julian Togelius. 2014. Searching for Good and
Diverse Game Levels. In Proceedings of the IEEE Conference on Computational
Intelligence and Games (CIG).

[18] Marco Scirea, Julian Togelius, Peter Eklund, and Sebastian Risi. 2016. Meta-
Compose: A Compositional Evolutionary Music Composer. In Proceedings of
Evolutionary and Biologically Inspired Music, Sound, Art and Design (EvoMusArt).
Springer.

[19] Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra.
2016. Constructive generation methods for dungeons and levels. In Procedural
Content Generation in Games: A Textbook and an Overview of Current Research,
Noor Shaker, Julian Togelius, and Mark J. Nelson (Eds.). Springer, 31–55.

[20] Noor Shaker, Miguel Nicolau, Georgios N. Yannakakis, Julian Togelius, and
Michael O’Neill. 2012. Evolving Levels for Super Mario Bros Using Grammatical
Evolution. In Proceedings of the IEEE Conference on Computational Intelligence
and Games.

[21] Noor Shaker, Julian Togelius, and Mark J. Nelson. 2016. Procedural Content
Generation in Games: A Textbook and an Overview of Current Research. Springer.

[22] Ruben M. Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A
survey on procedural modeling for virtual worlds. Computer Graphics Forum 33,
6 (2014), 31–50. h�p://graphics.tudel�.nl/Publications-new/2014/STBB14 doi:
10.1111/cgf.12276.

[23] Nathan Sorenson and Philippe Pasquier. 2010. Towards a generic framework
for automated video game level creation. In Proceedings of the international
conference on Applications of Evolutionary Computation.

[24] Kenneth O. Stanley and Risto Miikkulainen. 2003. A Taxonomy for Arti�cial
Embryogeny. Arti�cial Life 9, 2 (2003), 93–130.

[25] Julian Togelius, Mike Preuss, Nicola Beume, Simon Wessing, Johan Hagelbäck,
and Georgios N. Yannakakis. 2010. Multiobjective exploration of the Starcra�
map space. In Proceedings of the IEEE Symposium on Computational Intelligence
and Games.

[26] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. 2011. Search-based Procedural Content Generation: A Taxonomy and
Survey. IEEE Transactions on Computational Intelligence and AI in Games 3, 3
(2011).

[27] Roland van der Linden, Ricardo Lopes, and Rafael Bidarra. 2014. Procedural
generation of dungeons. IEEE Transactions on Computational Intelligence and
AI in Games 6, 1 (mar 2014), 78–89. h�p://graphics.tudel�.nl/Publications-new/
2014/LLB14 doi: 10.1109/TCIAIG.2013.2290371.

http://graphics.tudelft.nl/Publications-new/2014/STBB14
http://graphics.tudelft.nl/Publications-new/2014/LLB14
http://graphics.tudelft.nl/Publications-new/2014/LLB14

	Abstract
	1 Introduction
	2 Related Work
	2.1 Constrained Search-based PCG
	2.2 Evolution of Map Sketches

	3 Methodology
	3.1 The Dungeon Sketch
	3.2 Dungeon Segments

	4 Experiments
	4.1 Results of Dungeon Segment Evolution
	4.2 Sample Full Dungeon

	5 Discussion
	6 Conclusion
	7 Acknowledgments
	References

