
IEEE TRANSACTIONS OF AFFECTIVE COMPUTING, TBD 1

Modelling Affect for Horror Soundscapes
Phil Lopes, Antonios Liapis Member, IEEE and Georgios N. Yannakakis Senior Member, IEEE

Abstract—The feeling of horror within movies or games relies on the audience’s perception of a tense atmosphere — often achieved
through sound accompanied by the on-screen drama — guiding its emotional experience throughout the scene or game-play
sequence. These progressions are often crafted through an a priori knowledge of how a scene or game-play sequence will playout, and
the intended emotional patterns a game director wants to transmit. The appropriate design of sound becomes even more challenging
once the scenery and the general context is autonomously generated by an algorithm. Towards realizing sound-based affective
interaction in games this paper explores the creation of computational models capable of ranking short audio pieces based on
crowdsourced annotations of tension, arousal and valence. Affect models are trained via preference learning on over a thousand
annotations with the use of support vector machines, whose inputs are low-level features extracted from the audio assets of a
comprehensive sound library. The models constructed in this work are able to predict the tension, arousal and valence elicited by
sound, respectively, with an accuracy of approximately 65%, 66% and 72%.

Index Terms—Horror, Sonification, Tension, Crowdsourcing, Preference Learning, Rank annotations
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1 INTRODUCTION

AUDIO is often associated with classical or contempo-
rary musical pieces. The reality however is that audio

can be more than just “music”, but a meticulous crafted
sonority that complements visual and interactive experi-
ences, often described as audiovisual metaphors [1]. Sound
design is an important part of both film [1], [2] and digital
games [3], [4], [5], where sound designers fine tune the
intended emotional experience, through expert knowledge,
to the exact imagery on-screen. In digital games this process
is harder, as sounds must accommodate player interactivity,
and virtual environments that vary between different visual
styles along the course of an entire game [3], [6]. The task
of sound design can become even more challenging when
games procedurally generate these virtual environments as
the layouts — and potentially even the visuals — are gener-
ated in real-time. This paper investigates the construction of
several data-driven models capable of ranking the perceived
emotion of horror sounds across three affective dimensions:
tension, arousal and valence. Such models may offer an
additional layer of sound autonomy for procedural content
generation systems, allowing them to more closely recreate
the emotional progression that audio designers construct.
Motivated by the lack of such a model for game sound
design this paper introduces a crowdsourcing methodology
for deriving the computational mapping between sounds
within the horror genre and their perceived affect.

Models as the ones constructed in this paper can also be
applicable for tools that aid the development process. Due to
the increasing complexity of developing contemporary dig-
ital games, several development tools such as Unity (Unity
Technologies, 2005) and the Unreal Engine (Epic Games,
1998) have been used to aid the creation of content and re-
duce development costs. Although academic work in game
technology tends to focus on level design [7], these tools are
not exclusive to level designers, and include several features
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for sound designers, 3D modellers, animators and writers.
Complementary, AI-assisted game design systems such as
Sentient Sketchbook explore how tools can pro-actively help
designers, by offering suggestions and detailed information
of several important level design parameters [8]. We argue
that a system similar to Sentient Sketchbook can be realised
for sound design, through the development of automated
systems capable of suggesting specific audio assets based on
the developers’ thematic intent of a level’s soundscape. This
study offers the first operational step towards achieving
such a goal.

The field of music emotion recognition has often concen-
trated on the detection of emotions within contemporary
and classical musical pieces [9], [10]. This paper argues that
these models can also be used on sounds with the intent
of accompanying audiovisual experiences, especially when
considering that the objective of audio within both the film
and digital game media is to purposefully stimulate cer-
tain player emotions [11]. We construct several preference
learned models, using the rank support vector machine
algorithm [12], to predict the global rank of horror sounds
across the three affective dimensions of the Schimmack and
Grob model [13]: tension, arousal and valence. Although
previous work has explored the creation of preference mod-
els that rank emotion in audio [14], to the authors’ best
knowledge such a model has never been constructed for
sound intended to accompany audiovisual horror experi-
ences.

Human preference annotations were gathered using a
crowdsourcing platform, allowing participants to rank pairs
of sounds on the perceived tension, arousal and valence. We
assume there is an underlying function between low-level
descriptors extracted from each sound in the audio library
and the perceived emotions annotated by human partic-
ipants that a preference learning mechanism may derive.
This paper presents several models capable of predicting a
global rank of elicited tension, arousal and valence, respec-
tively, with a 65% and 66%, 72% average accuracy via 5-fold
cross-validation.
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This paper also introduces the first attempt of deriv-
ing a mapping between sound effects and perceived af-
fect directly giving insight to the important step of studio
manipulation [5] for sound design. Studio manipulation is
a way of creating novel audio pieces by combining dif-
ferent audio signals or altering the audio through signal
processing effects. Multiple types of audio effects exist such
as reverb or echo, that given certain parameter values can
significantly alter the perceived sound of the original audio
file1. We, thus, argue that a computational mapping between
sound effects and emotional manifestations would provide
AI-assisted and affect-driven systems the ability to suggest
certain effects that the designers might want to use, or even
allow automated systems to extend their internal audio
library through the usage of audio manipulation effects.
This study presents models capable of ranking the impact
of an audio effect on a sound in terms of elicited tension,
arousal and valence, with a 5-fold cross-validation accuracy
of 72%, 70% and 65%, respectively.

The paper is structured as follows. An overview of
related work is presented in Section 2, followed by a detailed
description of the experimental methodology in Section 3.
The performance obtained from the different models trained
is presented in Section 4, followed by a detailed discussion
in Section 5. The paper concludes with Section 6.

2 BACKGROUND

This section gives a brief introduction to the notion of audio-
visual metaphors, and a review of the related work in both
modelling sound-elicited affect and preference learning.

2.1 Affect and Audiovisual Metaphors
Beyond music, audio has often been used as an accompa-
niment of the on-screen imagery of film and digital games.
Described as audiovisual metaphors [1], this technique is
often used to emphasize certain emotions of characters or
scenes towards the audience. This work specifically explores
the creation of a model capable of ranking the perceived
affect of audio, intended for the creation of audiovisual
metaphors.

Fahlenbrach [1] describes audiovisual metaphors as
shared emotional and physical characteristics of the on-
screen pictures and sounds, that once effectively merged
are capable of conveying powerful emotions within the
audience. Perceived meaning of audiovisual metaphors re-
late to an individual’s personal emotional experience. Per-
sonal factors include cultural and social background (e.g.
symbolism and its meaning both in terms of audio and
imagery), personal association towards the on-screen drama
(i.e. associative emotion such as sorrow or fear), and even
stimulus-response-patterns derived from both sound and
imagery. Fahlenbrach exemplifies how audio is effectively
used in the Stanley Kubrick film “The Shining”, in the
popular staircase scene, where the conjunction of the careful
editing of the on-screen imagery and the chaotic dissonance
of the sound convey a sense of dread and tension. This is a
popular approach of treating sounds within the horror genre
(whether that is a movie or a video game), where both the

1. Examples of audio effects: https://goo.gl/kfHP7Y

absence of sound and the use of short uncomfortable audio
cues are consistently interwoven for the creation of tense
and frightening experiences [11].

This paper explores the creation of a system capable of
ranking short musical pieces based on how tense, arousing
and pleasurable participants perceive them. Such a system
may provide recommendations to sound designers for their
personal sound libraries — e.g. by suggesting different
audio files depending on the game context. It can also
offer automated systems an approach for sonifying virtual
game worlds, which can follow designer defined emotional
patterns [15].

2.2 Modelling the Affect of Sound

Modeling affect in the domain of music and sound has
traditionally divided studies with respect to their annotation
approach. While several researchers often study emotion
representation through discrete models [16], [17], alterna-
tively others have argued that dimensional approaches to
emotion representation are superior [18], [19], [20].

According to discrete models, all emotions can be de-
rived from a limited set of universal emotions, such as fear,
anger, disgust, sadness and happiness [16], [20], where each
emotional state is considered independent from any other.
Within the context of music, discrete models have been
altered to better represent emotions expressed by music,
such as disgust which rarely is perceived musically and thus
has been replaced with tenderness [21], [22]. The Geneva
Emotion Music Scale (GEMS) has been used as an alter-
native discrete model for representing affect in music; the
model classifies emotion into nine categories [17]: wonder,
transcendence, tenderness, nostalgia, peacefulness, power,
joyful activation, tension and sadness. According to [18],
however, there is evidence for the superiority of dimen-
sional models over discrete models for affect modelling in
music.

Emotion is often represented across dimensions in a
continuous space. Arguably the most popular model of that
type is the Russell circumplex model [23], where emotions
are represented as two dimensional planes (see Fig. 1a):
arousal (activation-deactivation) and valence (pleasure-
displeasure). Alternatively, the Thayer model [24] proposed
a variant to the Russell circumplex, and argues that both
dimensions are actually “tense arousal” (Arousal) and “en-
ergetic tension” (Valence). Schimmack and Grob [13] present
an alternative study based on a 3 dimensional model of
affect containing two dimensions for valence and arousal,
with an additional dimension for tension (see Fig. 1).

Due to the importance of tension within the horror genre
and our emphasis on tension-based game adaptation, we
study sounds based on annotations across the three dimen-
sions of the Schimmack and Grob model [13]. This allows
for each audio asset to be annotated on the dimension of
tension, while still leaving the possibility open to study the
valence and arousal dimensions.

Emotion recognition in audio is an active field of re-
search [9], [10], [25]; however, the focus of these studies is
usually on musical audio pieces and not on audio that is in-
tended for audiovisual accompaniment. Although previous
work has used film soundscapes as a way of comparing
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(a) Russell’s Circumplex Model (b) Schimmack and Grob Model

Fig. 1: Russell’s circumplex (Fig. 1a) is a two dimensional
model consisting of valence and arousal, each ranging from
a negative to a positive value of affect. Alternatively, the
model of Schimmack and Grob (Fig. 1b) is a three dimen-
sional model, consisting of valence, tension and energy (or
arousal), which also range from negative to positive values
of affect. For example in the Schimmack and Grob model
fear can be considered a high energy, high tension and
low valence emotion; while excitement a high energy, low
tension and high valence emotion.

emotional models [18] or investigating the variations of
affect across multiple genres [26], it has rarely been a main
focus within literature. It is also worth mentioning that most
work within music emotion recognition tends to focus on
the Russell model specifically [10], [14]. This work, instead,
offers a new perspective by both exploring the affective
space of the sound domain and by investigating an addi-
tional dimension (tension) as described in the Schimmack
and Grob model.

2.3 Ranking-based Annotation and Crowdsourcing
A number of studies in the fields of affective computing
and human computer interaction already suggest that rank-
based surveys is a far more accurate representation of an
annotator’s subjective assessment [27], [28], [29], when com-
pared to rating-based (e.g. Likert scale [30]) questionnaires.
Instead of quantifying individual items based on a scale of
variable length, rank-based annotation asks participants to
compare between a set of different items and rank them
according to a variable of a studied phenomenon. Ranking
eliminates the amount of subjectivity and variant interper-
sonal biases caused by a number of factors such as arbitrary
scale perception effects, order effects, scale inconsistency
effects, and social and cultural preconceptions that emerge
from the use of ratings [27], [29]. Crowdsourcing is a power-
ful tool for acquiring significant amounts of user annotated
data which has been used in a number of research domains
for soliciting subjective notions such as the appeal of a
narrative [31] or the annotation of a subjective experience
such as game aesthetics [32].

This work employs a rank-based crowdsourcing ap-
proach with the aim of soliciting human pairwise ranks
between sound samples within the sound library [15].
Annotations acquired from crowdsourcing will train data-
driven computational models capable of predicting global
ranks of tension, arousal and valence specifically for the
horror genre.

2.4 Preference Learning for Affect Modelling

Preference Learning (PL) is a supervised learning method-
ology, where the goal is to derive a global ranking function
from a set of annotated ranks [33]. PL for affective mod-
elling was introduced by Yannakakis [34] and has since
then been used extensively within the domain of affective
interaction, for e.g. personalizing game levels [32] and for
affect-driven camera control [35]. Rank Support Vector Ma-
chines (RankSVM), a variant of SVMs, was introduced by
Joachims [12] as a way of ranking webpages based on their
click rate. A RankSVM consists of projecting pairwise data
onto a feature space combined with ranked annotations, ad-
justing a weight vector (~w) so that all points in the training
dataset are ordered by their projection onto ~w. Although
RankSVMs started as a way of optimizing webpage queries,
it has been applied to several other domains quite success-
fully such as for the detection of emotion in speech [36] and
musical pieces [37].

Specifically in audio, Yang et al. [14] used preference
learning for music emotion recognition. RankSVMs were
used to rank different musical pieces — represented with
Russell’s circumplex model of affect [23] —- based on low-
level audio descriptors commonly extracted in music in-
formation retrieval. Inspired by the success of RankSVM
affect models in music, in this study we train a number of
RankSVM models and test their capacity to predict a global
order of audio assets, with and without audio process-
ing effects, using pairwise rank annotations obtained from
crowdsourcing. We build upon the methodology presented
by Yang et al [14] and we extend it in the domain of
sound (within games and beyond) through a crowdsourcing
approach. Beyond arousal and valence, we put an emphasis
and further model the affective dimension of tension. We
also focus on sound designed specifically for the horror
genre. Finally, we also study how audio signal modifica-
tion techniques, such as reverb, can alter the perception of
emotion in the original sound.

3 METHODOLOGY

This section describes how audio assets were selected to
form a sound corpus, the annotation methodology followed
via crowdsourcing and the subsequent preprocessing of the
data. Finally we detail the algorithms which were used to
construct computational models for tension, arousal and
valence.

3.1 System Overview

Figure 2 shows the system overview utilized within this pa-
per. A sound library of horror soundscapes is used and sub-
sequently annotated by individual participants. Participant
responses are obtained via a crowdsourcing methodology
and subsequently stored into a database. Each sound in the
library is represented by a feature vector, consisting of the
low-level features extracted from each sound. A relation-
ship between these low-level features and the participant
annotations are then learned through a supervised learning
method. In the context of this work a rank support vector
machine was used to create a predictive global ordering of
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Fig. 2: The system pipeline presented in this paper: 1)
The sound library provides a pair of sounds; 2) Partici-
pants compare sound pairs based on the perceived tension,
arousal and valence; 3) Participant annotations are kept in
an annotation database; 4) Annotations are used to train
RankSVM models; 5) Trained RankSVMs predict a global
ordering of unseen sounds.

sounds according to the perceived affect of tension, arousal
and valence.

3.2 The Sound Library
All audio assets were chosen from the existing database
of 97 sound assets featured in the horror game generation
system Sonancia [15]. Audio files consist of short audio
loops between 5 and 10 seconds long. Each audio asset
was recorded and produced by a horror sound expert using
the FM8 (Native Instruments) tool and the Reaper (Cockos)
digital audio workstation. Due to the overwhelmingly high
number of possible audio pair combinations out of 97 assets,
40 assets were carefully chosen by analysing their signal
according to their pitch and loudness. To obtain pitch and
loudness, we transformed each audio asset into a Hanning
windowed spectrum with a linear frequency distribution,
using the Audacity (Audacity Team) software. A spectrum
is the power density (measured in decibels, dB), which
measures the intensity and consequently “the loudness” of
each frequency band, and in turn affects the overall pitch of
sound.

According to Garner, et al. [38] loud and high pitch
sounds tend to have a higher impact in eliciting fearful
emotions. For this reason it was decided to plot each audio
asset according to the peak-to-peak difference of volume,
representing loudness, and the average power of frequen-
cies above 5k, representing high pitch (see Fig. 3). To obtain
a high degree of audio variability, the average Euclidean
distance between all sounds in the loudness-pitch space was
calculated. The 40 sounds with the highest distance were
picked for the crowdsourcing experiment (see Fig 3).

Audio Effect Library
Audio signal processing effects, which will henceforth be
referred to as audio effects, are processes that modify the orig-
inal audio signal. In sound production, effects are widely

Fig. 3: Scatter plot of the entire Sonancia library. Triangles
and circles are the selected and unselected audio assets,
respectively. Volume difference is the peak-to-peak volume
difference, while the volume of high pitch frequencies is the
average power of all frequencies above 5k.

used for multiple applications such as cancelling unwanted
frequencies (i.e. low-pass and high-pass filters), add em-
phasis to certain recordings in the master recording (e.g.
add an echo to the solo instrument) or even correct/change
the pitch of a signal (i.e. automatic tuning). In both films
and digital games, effects are regularly used for the same
purposes mentioned, and additionally for simulating virtual
environments [5], for the creation of novel sounds (e.g.
the roar of a dinosaur) or for adding more emphasis to
the base sound to convey more power than the original
recording (e.g. the sound of a gun). An example of a specific
audio snippet influenced by several different audio effects
is available online2 for the interested reader.

In this study we want to explore how effects can influ-
ence the perceived emotion in comparison to the original
audio signal, and if a data-driven approach can potentially
derive this relation between a sound effect, the audio piece
and the perceived emotion. In this way, effects could po-
tentially be used to alter the perceived emotion of an audio
asset to accommodate the needs of a sound designer. Each
effect is unique in altering the audio signal, but can be
combined in a sequence, for designers who want to achieve
a specific outcome. Different effects tend to differ on the
number and type of adjustable parameters, which can affect
the original audio signal to various ways and degrees. To
accomplish this we decided to constrain the effect types to
Reverb, Echo, Chorus, Flanger, Low Pass Filter, High Pass
Filter and Pitch Shift. For each effect all the parameters
were empirically predefined. Using the built-in Unity (Unity
Technologies, 2005) effects library, we were able to modify
the audio signal of the chosen audio assets and record them
accordingly.

3.3 Audio signal preprocessing and feature extraction

Low-level descriptors (LLD) consist of, or more accurately
“represent” information extracted from an audio signal it-
self. Usually there are three levels of extraction granularity

2. https://goo.gl/kfHP7Y
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which are associated to 1) selecting arbitrary points in the
signal; 2) defining sequential regions (i.e. frames) and 3) us-
ing pre-segmented regions. Depending on this granularity,
several statistical values can be derived.

For this work the openSMILE audio feature extraction
tool was used [39], and each value was normalized by its
distance from the population mean (z-score). OpenSMILE is
an open-access audio feature extraction tool that has been
widely used for speech emotion recognition [40], [41], [42].
Features extracted followed the ‘INTERSPEECH 2009 Emo-
tion Challenge’ feature set [43], comprising 384 statistical
features. Each LLD is extracted through a sequential frame
window of 25ms at a frequency of 10ms. In total 32 different
types of LLDs are extracted: the root-mean-square signal
frame energy (REgy), twelve mel-frequency cepstral coef-
ficients (MFCC1 to MFCC12), zero-crossing rate of time
signal (ZCR), the probability of voicing (V Prob) and the
fundamental frequency computed by the Cepstrum (F0).
Each LLD is smoothed by an average filter according to the
previous, current and following window. The additional 16
LLDs consist of the first order delta (∆) of all the previous
LLDs smoothed by the average filter. In total, 12 statistical
features are derived from each LLD, resulting to a combined
feature set of 384 features. The statistical features consist of:

• the maximum value of the contour (Max);
• the minimum value of the contour (Min);
• the difference between the maximum and minimum

values (Rg);
• the absolute position of the maximum value (in

frames) (FMax);
• the absolute position of the minimum value (in

frames) (FMin);
• the arithmetic mean of the contour (µ);
• the standard deviation (σ);
• the skewness (λ);
• the kurtosis (kt);
• the slope of a linear approximation of the contour

(aprs);
• the offset of a linear approximation of the contour

(apro);
• the difference between the linear approximation and

the actual contour (quadratic error) (apre).

All these features were used to create two different
datasets. The first dataset contains the statistical features
obtained from audio pieces without any signal modification
effects applied (the base audio dataset). The second dataset
contains the statistical features of both base audio and each
audio piece affected by every signal effect (the effect audio
dataset). Furthermore the effect audio dataset contains 3 ad-
ditional features, consisting of 3 binary values representing
the specific effect that the audio is being affected by, out
of the possible 7 different effect types. In particular “000”
represents no effect, whereas any other 3-bit combination
represents a particular effect.

3.4 Feature Selection

To reduce the feature dimensionality of the datasets, several
feature selection methods were used. Due to the success
of Mel-Frequency cepstral coefficients (MFCCs) in voice

emotion recognition [44], two variants of both base and
effect audio datasets were created, consisting of only the
MFCC statistical features. Sequential feature selection (SFS)
using both linear and radial basis function (RBF) support
vector machines were also used to further reduce the dimen-
sionality space of the datasets. SFS consists of sequentially
selecting features that are best capable of improving the
prediction accuracy, until the accuracy ceases to improve.
A set of different parametrizations were used across all of
the datasets, in order to experiment on how different SFS
parameters could effectively be used in training RankSVM
models. Additionally it is important to note that feature
selection is exclusively run on the training data. Once
training completes, all features selected through SFS are
subsequently used with unseen data for validation.

3.5 Crowdsourcing Sound Annotations

To effectively obtain the ground truth of sound-elicited
emotion, a large quantity of human annotated data was
necessary for all the different combinations of audio samples
and effects. Obtaining large corpora of training data through
crowdsourcing has proven to be effective in several domains
that involve annotations of subjective notions [31], [32]. For
that purpose, a website3 was developed allowing users to
easily rank two different sounds based on the tension, va-
lence and arousal affective dimensions. The start-up screen
presents a detailed description of the experiment and each
emotional definition (i.e. what is tension, arousal and va-
lence). These descriptions are also shown in an unobstructed
position during the experiment, by simply resting the mouse
cursor on the question mark icon, in case a reminder is
necessary. Each user is also asked to fill in a demographics
survey consisting of age, gender, musical knowledge and
how the user feels towards the horror genre. The system
will log these details for each annotation, in case users
decide to quit the experiment before all allocated sounds
are annotated.

For annotating sounds we adopt a rank-based approach
due to its evidenced effectiveness for highly subjective
notions such as affect and emotion [27], [29], [45]. In the
context of this work, sound annotation consists of reporting
the emotional preference of the user between a pair of
different audio assets (e.g. Sound A and Sound B) according
to tension, valence and arousal using a 4-alternative forced
choice (4-AFC) questionnaire. In particular, users must listen
to each sound, and pick one of 4 different alternatives, for
each affect dimension:

• Sound A is preferred over Sound B;
• Sound B is preferred over Sound A;
• Both are preferred equally;
• Neither is preferred.

For each participant the system can present either two
different sound assets to annotate (base sound annotation
experiment), or an audio asset and the same asset influ-
enced by an effect (sound effect annotation experiment).
Both experiments appear seamlessly to participants when
using the crowdsourcing online framework, without specific

3. http://sonancia.institutedigitalgames.com
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Fig. 4: The crowdsourcing annotation tool for sounds. The
top two icons allow users to select and play one specific
sound of the selected pair; only one sound can play at
a time to avoid cacophony. The 4-AFC questions below
ask the participant to rank valence, tension and arousal,
respectively. Once participants have answered all questions,
the user may press the ”Next Pair of Sounds” button below,
allowing the system to log and confirm their choices.

information about which effect is being used and which
sounds are being played.

Each user is assigned two different audio samples from a
general list of all existing sounds in the library. This list was
randomly ordered a priori, making sure that users obtain
the least amount of repeated sounds during their annotation
task, and that the entire library is equally distributed to
different users. Each user must listen to both sounds (in
any order) and rank them, and they may hear them again
any number of times. The system ensures that users have
listened to both sounds at least once, and ranked them
before moving to another pair of sounds. Figure 4 shows
the user interface of the sound pair ranking annotation.
To further validate and remove outliers that may derive
from participants or a system failure, the crowdsourcing
framework also logs the following data for each pair of
sounds:

• The reported ranking (preference);
• The total time spent completing the task;
• The total amount of clicks;
• The time spent listening to each sound sample;
• The number of times the user listened to each sound;
• The number of times the user changed his responses

and all previous values (if any) before committing to
an answer.

Participants are asked to annotate a minimum of 6 sound
pairs (3 pairs for the base audio dataset and 3 pairs for
the effect audio dataset). After 6 pairs have been annotated,
participants are encouraged to keep annotating more pairs
but they may quit the experiment at any time they wish. To
avoid losing information from annotators who disconnect
early, each annotation is logged on to the server immediately
after the user commits and confirms his answer.

The total number of pair combinations for the base
sound annotation experiment is determined by the permu-
tation of n (n = 40), being the total number of sound assets
in the library and the combination size r (r = 2 being a
pair): P 40

2 = 1560. The total number of sound asset pairs
required for the sound effect experiment is 1280 which is
the product of 40 sounds times 32 effects per sound.

Fig. 5: Each transformed data point φ(q) is projected onto ~w.
The ordering of each projection according to the direction of
~w dictates the global order.

3.6 Preference Learning

All computational models constructed in this paper are
trained using the Preference Learning Toolbox (PLT) [46].
PLT is an open-source accessible software featuring a variety
of pre-processing, feature selection and preference learn-
ing algorithms such as evolving artificial neural networks
(ANNs), ANNs trained with backpropagation, and Rank
Support Vector Machines (RankSVM). Due to the reported
efficiency of RankSVMs in numerous studies (e.g. see [14])
and its comparative computational benefits over ANNs we
opted to employ RankSVM for the task of model construc-
tion based on annotated preferences.

RankSVMs are modified versions of regular support vec-
tor machines which were first introduced by Joachims [12].
This specific type of SVM attempts to maximize the
Kendall’s τ [47] between the expected ranking r∗ and
the proposed rf(q), where the feature space consists of
a mapping (Φ(q, d)) between a sound q and its ranking
label d. The algorithm optimizes a boundary ~w (classifier)
so that it accurately determines the ranking order of the
feature space. Specifically all points in the feature space
are generated by the training data and are labelled by their
ranking information, which is subsequently used to find the
boundary (~w) capable of describing their rank order (see
Figure 5). RankSVMs also allow the application of different
kernel types such as Radial Basis Function (RBF), which
was also used as an alternative, to the linear SVM for com-
parative purposes. Within this work support vectors consist
of pairwise preferences where the difference between their
feature vectors represents the specific preference, similar to
the methodology used in [48]. A global order can then be
derived through the prediction of preferences from each pair
in the dataset.

4 ANALYSIS AND RESULTS

This section discusses the core descriptive statistics of the
obtained crowdsourced data collected and the key results
obtained. In particular, in Section 4.1 we analyse the data
collected from the crowdsourcing experiments; then in Sec-
tion 4.2 we derive a global order of affective rank responses
and finally, in Section 4.3 and Section 4.4 we present the
core results from the affect modelling experiments on the
crowdsourced data via preference learning.
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TABLE 1: The average time (in seconds) and the respective
standard error in parenthesis of (from left to right): total time
required for both experiments; total time for base sound
experiment; total time for sound effect experiment; total
time listening to sound A for both experiments; total time
listening to sound B for both experiments.

Both Exp Sound Exp. Effect Exp. Sound A Sound B

47.23 (4.1) 41.88 (2.8) 51.59 (7.01) 16.8 (0.47) 15.54 (0.46)

4.1 Data collected

The crowdsourcing platform was heavily disseminated
over social media platforms, including Twitter, Facebook
and Reddit; scientific conferences and within the Univer-
sity campus. At the time of writing 1009 annotations are
collected in total: 453 of these annotations consist of com-
parisons between two different sounds, while the remaining
556 are comparisons between a sound and one of its effects.
Annotators were 31.2% female, 67% male and 1.1% did
not specify. The majority of annotations came from the age
group between 25 to 34 years of age (52%), while the second
highest was between 18 and 24 years (23.2%). Further, 73%
of the annotators were non-musicians (never played an in-
strument), while the remaining were non-professional (21%)
and professional musicians (5%). Interestingly the majority
of annotations came from people who enjoy the horror
genre (56.5%); 13% of these stated it was their favourite
genre. Approximately a fourth of annotators (26%) claimed
they do not enjoy this genre, while the remainder 16%
did not have an opinion on this specific question. Table 1
shows the average times taken to complete tasks during the
crowdsourcing experiment.

To combat bias and ambiguity within the data annota-
tions, a random order was applied to the dataset. Addi-
tionally several annotations were pruned due to ambiguous
answers by participants, defective annotations and the lack
of sufficient annotations for specific sounds. The pruning
methods used are further described below in each section.
The dataset used for the following experiments are publicly
available here4.

4.1.1 Sound Ranking Experiment

The sound ranking experiment amassed a total of 453
annotations. The distribution among the four available pref-
erence options is shown in Table 2. For tension and arousal
participants were more forthright in preferring one of the
two sounds, although a slight skew is noticeable towards
sound B. Valence on the contrary presented very balanced
responses between A and B; however a high number of
participants stated that neither sounds were pleasurable,
which is not surprising considering the audio library used
was specifically designed for the horror genre.

In order to apply supervised preference learning, am-
biguous annotations were discarded (i.e. Both Equally and
Neither) [28]. Following pruning the total resulting base

4. http://www.autogamedesign.eu/sonancia

TABLE 2: The preference distribution of the crowdsourced
sound ranking experiment.

Affect A B Equally Neither Total Baseline
Accuracy

Tension 187 216 34 16 453 53.6%
Arousal 170 219 29 35 453 56.3%
Valence 168 166 10 109 453 50.1%

sound annotations amounted to 403, 389 and 334 for ten-
sion, arousal and valence, respectively.

For comparison purposes a baseline value was derived,
and consists of the maximum accuracy obtained by exclu-
sively picking either sound A or B (i.e. the most dominant
preference of the two). Based on Table 2, for tension and
arousal the baseline always picks sound B, and for valence
always picks sound A. The baseline accuracy is computed
as the highest number of A or B chosen (e.g. B in tension,
216 times) divided by the number of times A or B was
chosen (e.g. 403 times for tension). We can observe that
there is no clear primacy or recency effects and that baseline
accuracy is very close to chance levels for all three affective
dimensions examined, meaning no clear favouritism was
visualized between either sound A or B.

Some insight might be gleaned from the relationship
between global ranks of valence, arousal and tension. Al-
though there is a positive rank correlation between tension
and arousal (0.25) and a negative correlation between va-
lence and arousal (−0.13), respectively, this effect is not
substantial. There is however a substantial negative rank
correlation between tension and valence (−0.45). This is not
surprising, as it is due to both the inherent nature of the
audio assets themselves, and also the opposite nature of
these two dimensions; being tense is rarely pleasurable.

4.1.2 Sound & Effect Ranking Experiment

For this experiment both the audio signal effect annota-
tions were combined with the previous sound ranking an-
notations. This allows for the creation of a more generalized
model, able to predict a rank between two diverging sounds
and between an audio piece with or without an effect. It
also increases the amount of training data to a total of 1009
annotations. For the sake of simplicity a sound that is not
influenced by an effect will be referred to as a “base sound”.

Table 3 shows the preference distribution of both experi-
ments. An initial analysis of data reveals that the majority of
users (79%) annotated sounds that are influenced by effects
as less tense and arousing than the base sounds. Interest-
ingly, a slight majority stated that sounds influenced by
effects were more pleasurable than the base sounds (63.6%).
We assume that this was due to the capacity of some effects
to lower substantially the volume of the original sound,
which potentially correlates to how users relate to arousal
and tension. Further analysis of the preference distribution
also shows a significant skew towards the sound B option
across all affect annotations. This skew is most likely caused
due to the current annotation dataset which associated
effected sounds to sound A, and eventually influenced the
participants’ reported preference.
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TABLE 3: The preference distribution of post-pruned crowd-
sourced annotations, for the sound and effect ranking exper-
iment.

Affect A B Equally Neither Total Baseline
Accuracy

Tension 177 377 221 82 857 68%
Arousal 162 367 216 122 867 69%
Valence 244 181 141 336 902 57%

Noticeably there is also a higher number of ambiguous
answers, suggesting that certain effects did not influence
the base sound in such a way that was noticeable to the
participants. These results also show a particular challenge
with the effect parametrization, which we did not anticipate.
For the purposes of this experiment a global set of param-
eters were defined for each of the effect types beforehand.
However, some sounds were unaffected by these parameters
(e.g. sounds without a frequency filtered by an effect). For
example a sound which consists of low frequencies will be
rarely affected by a high pass filter, as this effect may merely
remove high frequencies.

Ambiguous rankings (both equally or neither) were dis-
carded from the datasets for each affective dimension. Four
entries were also removed from the dataset due to a failure
with the logging system. Several sound and effect pairs were
also removed from the dataset, due to audio clipping issues
providing unreliable low-level features of those sounds. In
total 554 (306 sound and 245 effects), 529 (295 sound and
234 effects) and 425 (267 sound and 158 effects) data points
were kept for tension, arousal and valence, respectively.

The baseline accuracy was computed based on the most
preferred sound between A and B, as described in Sec-
tion 4.1.1. The baseline accuracy for all affects increased sub-
stantially compared to the previous experiment, as shown in
Table 3. For tension and arousal, users picked sound B twice
as often as sound A. The observed skewness of the baseline
is likely due to the lack of a complete annotation corpus, as
previously described, and due to the fact that participants
often preferred the base sounds instead of the ones with
effects. Effected sound was always sound A, which users
often did not consider as tense or arousing as sound B.

Similarly to the previous results both valence-arousal
(−0.15) and the tension-valence (−0.42) rankings are neg-
atively correlated, although with slightly differing results.
However, the correlation between tension-arousal (0.46)
increased. This is most likely due to the influence of some
effects on the volume of the base sound, which potentially
made the effected sounds quieter. Louder sounds tended
to be perceived as both more tense and more arousing in
comparison to those with a lower volume.

4.2 The Global Order of Sound Annotations

The 40 sounds are ranked based on the human-
annotated tension preferences. The global order is derived
through the pairwise preference test statistic [28] which is
calculated as Pi = (

∑N
i zi)/N , where Pi is the preference

score of sound i, z is +1 if the sound i is preferred or −1
if the sound is not preferred in a pair of sounds, and N is

the number of samples for sound i. The obtained preference
scores P define the global order (rank) of each sound with
respect to tension, arousal and valence.

Figure 6 shows the obtained preference scores Pi for
each affective dimension and sound asset, ordered by the
global ranking of the tension dimension. By observing the
figure we can see that both tension and valence tend to
oppose each other quite frequently. Surprisingly the arousal
and tension dimensions did present some diverging results,
which were not expected, such as situations where partic-
ipants annotated a specific sound as being tense, but not
arousing, e.g. sound 9; or very arousing but not particularly
tense, e.g. sound 8. Interestingly the sound ranked highest
in both the valence and arousal dimensions was the same,
but, that sound is only ranked 32nd out of 40 in the tension
global order (see Fig. 6). A general observation, however,
is that highly tense sounds are annotated as arousing with
rather low valence, whereas, less tense sounds are usually
characterised by higher valence and lower arousal values.
This observation naturally follows the rank correlations
between the affective dimensions.

For the interested reader, the 5 top and bottom ranked
sounds in the tension dimension can be listened to online5.
When listening to all the aforementioned sounds, the first
4 consist mainly of high pitch sounds, while sound 5 is a
constant low pitch sound. Although the first 4 sounds are
in-line with the studies of Garner et al. [38], we hypothesize
that sound 5 obtained such a high rank due to how uncom-
fortable it is to listen in a constant loop. Interestingly, the
sound that ranked first is a higher pitch version of sound
38 (one octave lower) and 40 (two octaves lower) which is
also in-line with Garner et al.’s findings. However a notable
exception is present with sound 36, which consists of a high
pitch sound compared to any of the top 5 tense sounds.

For comparison purposes the top and bottom 5 ranked
sounds for the arousal dimension can be listened to online6.
Most top ranked sounds consist of lower pitches when
compared to the previous tension global rank, with the
exception of sound 4, which is the same sound that was
ranked third for tension. However, most users considered
sounds with a lower pitch as more arousing than higher
pitch sounds. This is evident with sound 2 and 38 which
consist of the same sound in a lower and higher octave,
respectively. High ranked sounds also consist of a mix
between audio with small rhythmic patterns, present in
sound 1 and 2, while sounds 3 and 5 consist of audio with
no specific rhythm.

As with tension and arousal, the top and bottom five
ranked audio assets for the valence dimension can be heard
online7. Most highly ranked sounds consist of audio where
the majority of frequencies were in the moderate octave
range; on the other hand, higher pitched sounds were
ranked lower.

To study the relationship between high pitch or high
volume, which are indications of tense sounds [38], and the
obtained global ranks, the kendall’s τ correlation coefficient
was calculated [47]. Table 4 shows the correlation and p-

5. https://goo.gl/Z2ihfo
6. https://goo.gl/IbY0gf
7. https://goo.gl/E7VIu0
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Fig. 6: The global order and distribution of the annotated sounds in each affective dimension: tension (black), arousal
(grey) and valence (white). The y-axis consists of the preference score value (Pi) and the x-axis consists of the sound rank
according to the tension dimension, ordered by the most to less tense sounds.

TABLE 4: Kendall’s τ correlation and p-value (in parenthe-
sis) between the global order of each affect and the rank of
both the volume difference and high pitch frequencies.

High Pitch Frequency Volume Difference

Tension 0.04 (0.67) 0.05 (0.61)
Arousal 0.20 (0.06) -0.04 (0.67)
Valence 0.19 (0.07) 0.04 (0.69)

values, between the global order of each affective dimen-
sion and the rank of both the volume difference and the
high pitch frequencies. Our analysis strongly suggests that
perceived emotion in audio has a deeper complexity, and
that a linear relationship between low-level features and
a perceived effect might not be sufficient. It thus suggests
that a more complex relationship, possibly supported by
additional features can potentially improve the task of audio
affect modelling.

4.3 Learning to Rank Sound

The creation of a model that is capable of ranking “un-
seen” sound assets can be beneficial to automated sonifica-
tion systems that may evaluate the affective impact of a new
sound and place it within a particular context in any form
of human computer interaction: for instance, in a particular
room of a new game level. This can, in turn, allow the
system to create specific emotional progressions based on
how each sound asset is ranked by the model. This section
discusses the results obtained from training different models
capable of ranking sounds based on tension, arousal and
valence. Please note that for the remainder of this paper we
present the best average accuracy obtained for each affective
dimension but we also provide the accuracy of the best fold
in parentheses.

Figure 7 shows the average 5-fold cross-validation accu-
racy of the two different RankSVM kernels employed (linear
and RBF). For tension the best average obtained was 65%
(68%), using SFS on the MFCC LLDs and a RBF kernel set
to a gamma value of 0.2. The linear kernel performed worse
in comparison to RBF, but was still able to improve upon
the baseline. SFS proved to be advantageous for the tension
dimension, as it consistently improved accuracy regardless
of the kernel used.

Interestingly arousal was the most difficult to predict
of the three affective dimensions, which was surprising
considering that literature states otherwise [14]. Without the
application of SFS the accuracy of the models rarely achieves
the baseline independently of the kernel parameters or the
dataset used. Analysing Fig. 7 we can see that most models
are capable of achieving higher accuracies in comparison to
the baseline, where the main exception is the linear models
trained exclusively with MFCC. The best obtained accuracy
is 66% (69), 10% over the baseline, by applying SFS with
all the LLDs and training with the RBF kernel. Surprisingly
the MFCC trained models obtained much higher accuracies
through the RBF kernel. There was also not much difference
between both All and MFCC trained model types. Consid-
ering that arousal is often closely associated to rhythm [49],
it is surprising that it achieved similar accuracies as these
types of features are absent in the MFCC dataset. A po-
tential reason why the other affective dimensions outper-
formed arousal significantly, is due to it being an uncommon
affective description to an untrained annotator (crowd),
compared to the other affective dimensions of tension and
pleasure (valence).

Contrary to arousal, valence was easier to predict and
corresponding models yield the best accuracies compared
to the other two affective dimensions (see Fig. 7). The best
average accuracy of 72% (79%) was obtained using an RBF
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Fig. 7: Learning to rank sound: The test accuracy mean and
95% confidence intervals of the 5-fold cross-validation of
RankSVM models, employing two different kernels (Linear
and RBF) across two different sound features: all features
(All) and only the MFCC features (MFCC). Sequential
feature selection is applied in all experiments reported.
Presented accuracies for RBF consist of the best accuracy
obtained via extensive parametrization testing.

kernel on the “All’’ dataset, whose features were selected
through SFS. This specific model was able to improve upon
the baseline by 22%. Despite a few exceptions, models
trained without SFS still managed to obtain values above
60%, while models that did apply SFS obtained a substantial
increase in both datasets.

In conclusion both Tension and Arousal were indeed
harder to train in comparison to the Valence affect. We
hypothesize that this was due to the specific sound library
used, which focused specifically on sounds in horror. It is
easier to learn the relationship between pleasurable sounds,
when a low number of these potentially exist within the
library. On the other hand for Tension and Arousal a greater
“competition’’ between high-tense and high-arousal sounds
exist, making it harder to learn these relationships due to
potentially unclear distinctions, and possibly diverging user
opinions within the annotations.

4.3.1 Selected Features
For brevity Table 5 shows the selected features obtained
through SFS, of the most accurate fold of a 5-fold cross-
validation experiment with the highest average accuracy
across all folds. This is necessary as each fold is trained
independently with feature selection and then subsequently
tested on unseen validation data, meaning that each fold
will select substantially different features. For tension, the
majority of features selected were MFCC statistics, sug-
gesting that out of all features available MFCC descriptors
were more capable of finding a relation to tension than the
other descriptors. Interestingly, the fold presented in Table 5
was the only fold to utilise one feature, and achieved an
impressive testing accuracy.

Alternatively both the RBF(All) and RBF(MFCC) arousal
models achieved similar average accuracies, despite using
a diverging number and set of features. While RBF(MFCC)
obviously focused on MFCC features exclusively, it relied
on a lot less features than the models trained with RBF(All).

TABLE 5: The selected features of the most accurate fold
with the best obtained average accuracy model parameters
of each affect.

Tension Arousal Valence

Model RBF(MFCC) RBF(All) RBF(All)

Selected
Features Rg(MFCC3)

kt∆MFCC1

µ∆MFCC9)
Min(∆MFCC3)
apro(MFCC4)
σREgy

FMax(∆MFCC3)
µ∆MFCC10

µMFCC6

Max(MFCC1)

Using SFS with RBF(All) consistently chose RMSEnergy
features, which then influenced the remaining chosen set
as the algorithm attempted to find the best combination as
to optimize accuracy. This particular example shows one
the main weaknesses of SFS. Being a greedy algorithm,
SFS chose the best feature that maximizes model accuracy
sequentially. However, this does not guarantee that the set
of features in conjunction outperforms another feature set,
as different combinations might result in better predictions
even though the first selected feature was performing worse.
Therefore, feature pruning can still be beneficial when using
an SFS algorithm. Alternatively a genetic feature selection
algorithm might prove more useful in future studies, even
though it is computationally more intensive. A Sequential
Backward Selection can also potentially help, as it starts
from the entire combination of features and removes each
feature that does not significantly decrease model accuracy.

Similarly to tension, the valence models also abundantly
chose MFCC statistical features. It does suggest that both
tension and valence have a closer relationship to tonic and
harmonic features.

4.4 Learning to Rank Sound & Effects

This section presents the predictive accuracy obtained
from training various SVM models that rank both base
sounds and how their perceived affect is influenced by
different effects, and between the base sounds.

Figure 8 shows the average tension, arousal and valence
accuracy over 5 folds for different RankSVMs. Unfortu-
nately no significant improvements were obtained from the
baseline, suggesting that certain types of sound effects were
more detrimental than helpful to the overall prediction of
perceived affects.

For tension the Linear(MFCC) model consistently ob-
tained averages between 62% and 68%. The linear
RankSVM performed better with the All dataset, but com-
pared to the RBF kernel it performed worse. For tension the
highest average accuracy obtained was 72% (78%).

Arousal models using the MFCC features performed
slightly worse than the entire LLD feature dataset. Addi-
tionally with the exception of the RBF(All) models, arousal
rarely achieved average accuracies surpassing the baseline,
even though the performance increased in comparison to
the previous experiment. We assume that this jump in
accuracy was due to how certain effects altered the base
sound’s volume, which has often been closely associated
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Fig. 8: Learning to rank sound and sound effects: The test
accuracy mean and 95% confidence intervals of the 5-fold
cross-validation of RankSVM models employing two differ-
ent kernels (Linear and RBF) across two different sound fea-
tures: all features (All) and only the MFCC features (MFCC).
Sequential feature selection is applied in all experiments
reported. Presented accuracies for RBF consist of the best
accuracy obtained via extensive parametrization testing.

to loudness [49]. Arousal consistently underperformed ob-
taining values below the baseline, with the exception of
RBF(All), which was able to slightly surpass the baseline
with an accuracy of 71% (76%).

Compared to the other affective dimensions, valence
performed worse. We believe that this is due to the sig-
nificant amount of ambiguous rank data obtained in this
affect dimension in comparison to the others. However,
RBF models with SFS were consistently able to achieve
accuracies above the baseline. Valence RankSVMs did not
manage to achieve average accuracies above 65%, despite
parameter tweaking. Also unlike all the other dimensions,
valence models failed to hit the 70% average accuracy bar.
Applying SFS was crucial for improving performance of
valence models: initial testing showed that these models
rarely achieved average accuracies above the 60% mark,
without SFS. The best average accuracy obtained was 65%
(71%), with the RBF(MFCC) model.

4.4.1 Selected Features
Similarly to Section 4.3.1 this section will detail the selected
features chosen by the SFS algorithm using the same annota-
tions for simplicity. Additionally the effect input parameter
is represented as Effectx, where x is the effect’s index.

In this particular experiment the SFS was less biased
towards MFCC statistics, even though they are still quite
substantially present. Interestingly the effect input binaries
did not prove to be particularly helpful for affect prediction,
with only the tension model taking one into account. Ad-
ditionally in the majority of RBF(All) models presented sta-
tistical features related to REgy more consistently than the
previous experiment. We hypothesize that this was due to
how sound effects substantially change the volume and/or
pitch in comparison to the base sound. These alterations can
particularly influence how tension, arousal and valence are
perceived in comparison to the base sound. High volume
can influence tension and arousal [38], while a too high or a

TABLE 6: The selected features of the most accurate fold
with the best obtained average accuracy model parameters
of each affect.

Tension Arousal Valence

Model RBF(All) RBF(All) RBF(MFCC)

Selected
Features

Min(REgy)
aprs(MFCC9)
Effect2
FMax(MFCC6)
FMin(MFCC11)
σF0
Min(MFCC2)
Rg(MFCC4)
σMFCC3

µV Prob
Max(MFCC6)
σ∆MFCC6

Min(REgy)
µMFCC7

apre(MFCC1)
µ∆MFCC4

apre(ZCR)

kt∆MFCC2

kt∆MFCC3

apre(MFCC11)
apro(∆MFCC12)
FMax(MFCC6)
Rg(MFCC4)
Rg(MFCC8)

TABLE 7: Comparison of the rankings between the base
sound and 4 different effects in the predictive global ranking
of the most accurate fold of the tension, arousal and valence
affects. For brevity the highest ranked effect or base sound
is chosen for analysis.

Tension Arousal Valence

Effects

Rk 1 (Echo)
Rk 42 (Chorus)
Rk 63 (Reverb)
Rk 93 (Reverb)

Rk 1 (Reverb)
Rk 2 (Reberb)
Rk 5 (Reverb)
Rk 21 (Chorus)

Rk 1 (Reverb)
Rk 15 (Reverb)
Rk 196 (Reverb)
Rk 225 (Flange)

Base Sound Rk 8 Rk 4 Rk 1069

too low pitch can cause a sense of discomfort impacting the
valence state.

4.5 Rank Comparison of Sound and Effects
To study the impact of effects on each affective dimension,
the predicted global rank obtained from the most accurate
fold for tension, arousal and valence of Table 6 is analysed.
Table 7 shows the rankings of a base sound and its 4 highest
ranked effects within the predicted global rank. For the
interested reader all sounds presented in Table 7 can be
listened to here8.

Valence showed the most surprising results, where ef-
fects greatly influenced the enjoyability of high pitch base
sounds. Particularly reverb often influenced both pitch
and volume substantially improving the enjoyability of
the sound in comparison to the base sound. Tension in
particular showed more varied effect influences, where
certain effects had a higher consistency of improving the
perceived tension (e.g. Echo and Reverb), while others often
deteriorated (e.g. Flange) in comparison to the base sound.
Alternatively, arousal was not influenced by effects. The
base sound is often within the general rank vicinity of its
effects, having a minor impact on the base sound.

5 DISCUSSION

Music-elicited emotion recognition is a complex task
due to the ambiguous nature of human emotions and the

8. http://www.goo.gl/Qmp019
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subjectivity of sound perception. In this work we attempted
to construct models capable of learning the relationship
between low-level statistical descriptors of audio, and their
perceived emotion. The best models constructed for tension
obtained average accuracies between 65% and 72%. Results
obtained from crowdsourced user annotations suggest that a
divergence exists between tension and the affective dimen-
sions of arousal and valance, which validates, in part, the
viability of the Schimmack and Grob [13] model. However,
due to the context of this work within the horror genre,
a more general approach might be required to attest these
findings. It is also worth noting that the tension affective
models obtained similar or higher predictive accuracies,
when compared to models of arousal and valence.

For the base sound comparison experiments, the most
successful affect consisted of the valence models, which
achieved a cross-validation accuracy of 72%. Surprisingly,
arousal performed much worse, achieving only 66% predic-
tion accuracy. We hypothesize that this is due to the LLDs
being too specific to the voice emotion recognition problem,
which tends to concentrate on harmony and timbre (e.g.
Mel-Frequencies) rather than rhythm. This can be observed
through the selected features of both the valence and tension
models, where there was a substantial favouritism towards
MFCC statistical features. Although arousal did outperform
tension, it did so by a relatively small margin (∼1%). We
hypothesize that the similarity of sounds within the audio
library also contributed to the higher training difficulty, as
more conflicting annotations might be present within these
affective states. This could potentially be rectified with more
user annotations, solidifying the relationship between the
different sound pairs. Unfortunately the retention of large
quantities of user annotated data is still a difficult task to
achieve, even when utilising a crowdsourcing solution.

Interestingly valence models performed better than what
we initially expected, assuming that the majority of models
obtained would have a high degree of ambiguity. This
expectation is consistent with the participant annotations,
given that valence resulted in the most ambiguous answers
compared to the other two affective dimensions. We hypoth-
esize that due to this ambiguity, sounds that were in fact
annotated as pleasurable presented clearer distinguishable
features facilitating training. In general, due to the context
of this work within the framing of horror, there is little we
can clearly state about valence, as sounds were specifically
designed to be unpleasant.

For our second set of experiments, models were trained
on the combined annotations of base sound and sound-
effect pairs, which improved the accuracies of both the
tension and arousal models. The best model obtained for
tension and arousal achieved an average accuracy of 72%
and 71%, respectively. We believe that this improvement
is due to the dominant preference of sounds uninfluenced
by effects in these two affective dimensions, which conse-
quently facilitated learning. Effects that had little influence
on the base sounds, were also heavily filtered by partic-
ipants who could not distinguish any difference between
them. This allowed us to retain sound features of the more
influential effects to train our models. Valence however was
slightly harder to train compared to arousal and tension (the
best model achieved an average accuracy of 65%) due to the

reasons stated earlier. Unlike tension and arousal there was
no clear valence preference between base sound and sounds
with effects.

Although there was a large user participation in the
crowdsourcing annotation experiment, we were unable to
obtain annotations for all possible pair of sounds or base
sound-effect pairs. This was apparent for the sound effect-
pair experiment, where we were unable to get more than
half of the required annotations (1009 out of 2840), while
also discarding ambiguous user answers. This caused the
data to be particularly skewed towards sounds without ef-
fects, which was evident in our effect experiment baselines.

Crowdsourcing data suggest that effects did not pro-
duce the variation intended between the base and effected
sounds. This is likely why the majority of effect annota-
tions were ambiguous and subsequently discarded. This
ambiguity stems from the constant parameters that were
set for each sound in the library. Even the application of
certain effects to specific sounds may not be appropriate; for
instance, applying low pass filters to sounds whose signal is
mostly of low frequency may result in complete silence. This
limitation can potentially be eliminated by ad-hoc selecting
each effect parameters that best alter each sound within the
library. Another potential solution would be to automate
this process, allowing a machine learning model to set effect
parameters that best alter a specific sound.

While our feature extraction is already thorough, more
sound features need to be investigated in future studies. Pre-
liminary results, however, suggest that the models’ accuracy
does not improve with the addition of certain features, as
shown by the small accuracy variation between the “MFCC’’
and “All’’ datasets.

As a final step towards realising affective interaction via
sounds in horror games we intend to use our models in
already developed tools that can be used by sound designers
directly. Sonancia [15] provides an appropriate platform for
future experiments with the affect models introduced in
this paper. Sonancia procedurally generates game levels and
corresponding sounds based on a designer defined progres-
sion of tension. Our models can be used to autonomously
select sounds from the library, apply particular sound effects
and subsequently place the resulting audio asset within
the virtual world to match the defined progression. Other
potential application domains include experience-driven
generated games [50] in which the obtained models would
allow designers or automated processes to specify intended
experiences for players. This can be achieved for diagnostic
or therapeutic purposes [51], for realising effective game-
based learning [52], [53] or alternatively for enabling an
AI-assisted game design approach [54] that can suggest
soundscapes which are expected to elicit particular emotive
patterns.

6 CONCLUSION

This paper studied how sound, specifically designed for
horror, can influence the emotional state of human users
in the tension, arousal and valence affective dimensions.
We also investigated how sounds passed through a digital
signal processing effect could potentially alter the emotional
state perceived. User preferences of each sound and effect
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pairing from our library were annotated for each dimension
via crowdsourcing. A global rank of each sound in the
library was constructed from the preferences obtained for
each affective dimension. Our findings suggest that highly
ranked sounds in the tension dimension are often ranked
lower in the valence dimension, revealing a negative cor-
relation between the two. Participants also tend to prefer
sounds without effects in terms of tension and arousal,
while no clear preference was derived for valence.

Further to the descriptive statistical analysis, this paper
proposed several data-driven models capable of predicting
the global rank of horror sounds within the same affec-
tive dimensions. Low-level descriptors for each sound and
sound effect were extracted with the openSMILE sound fea-
ture extraction tool. The features were divided into two dif-
ferent datasets: one containing all of the extracted features,
and another containing only the MFCC features. RankSVM
models, using both the linear and RBF kernels, were trained
to predict the annotated user preferences on both datasets
in conjunction with sequential forward feature selection. In
general, results obtained suggest that tension and arousal
had a similar degree of training difficulty. Valence proved
to be less difficult to predict in the sound comparison
experiment, which is consistent with many other studies in
the domain of music-based affect modelling. However, once
the effect dataset was included, valence models performed
worse in comparison to the other two affective dimensions.
Nevertheless, it might be dangerous to derive a general
conclusion about the viability of these models outside the
horror genre, as the sound library used has a potential bias
towards unpleasant sounds.

The key findings of the paper suggest that a model of
tension could potentially be constructed. Even though ten-
sion models did not substantially outperform other affect di-
mensions, they did consistently obtain similar performances
showcasing robustness across learning tasks.
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he developed the Geometry Friends competition
framework. Currently his research focus consists
of developing new tools and methodologies for

procedurally generating content at the interplay of audio, level design
and visuals within the horror digital game genre; while also exploring
new ways of automating and adapting sound to 3D virtual environments.
Currently his most developed system is the Sonancia generator, a multi-
faceted generator for horror.

Antonios Liapis is a Lecturer at the Institute
of Digital Games, University of Malta (UoM). He
received his 5-year Diploma (2007) in Electrical
and Computer Engineering from the National
Technical University of Athens and the M.Sc.
(2011) and Ph.D. (2014) in Information Tech-
nology from the IT University of Copenhagen.
He does research on the crossroads of game
design, artificial intelligence and computational
creativity. More specifically, he explores the lim-
its of computational input to the human-driven

design process in computer-aided design tools. Beyond AI-assisted
game design, his research pursuits revolve around procedural content
generation, digital aesthetics, evolutionary computation, neuroevolution
and constrained optimization. He has published over 50 international
journal and conference papers in the aforementioned fields, and has
won several awards. Moreover, he has led or participated in the design
and development of several games of varying scope and for different
target audiences, including two FP7 ICT projects.

Georgios N. Yannakakis is an Associate Pro-
fessor at the Institute of Digital Games, Univer-
sity of Malta. He has received the Ph.D. degree
in Informatics from the University of Edinburgh
in 2006. Prior to joining the Institute of Digital
Games, UoM, in 2012 he was an Associate Pro-
fessor at the Center for Computer Games Re-
search at the IT University of Copenhagen. He
does research at the crossroads of artificial intel-
ligence, computational creativity, affective com-
puting, advanced game technology, and human-

computer interaction. He pursues research concepts such as user ex-
perience modelling and procedural content generation for the design of
personalized interactive systems for entertainment, education, training
and health. He has published over 200 journal and conference papers
in the aforementioned fields. His research has been supported by nu-
merous national and European grants and has appeared in Science
Magazine and New Scientist among other venues. He is currently an
Associate Editor of the IEEE TRANSACTIONS ON AFFECTIVE COMPUT-
ING and the IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE
AND AI IN GAMES. He has been the General Chair of key conferences
in the area of game artificial intelligence (IEEE CIG 2010) and games
research (FDG 2013).


