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Abstract— Inverse Dynamics Models (IDMs) attempt to pre-
dict the actions that cause observable changes in a scene.
Current methods for building accurate IDMs either rely on
rule-based systems that exploit video metadata or require
large-scale training over thousands of video hours. These
approaches are inevitably limited to a single domain due to
the difficulty of acquiring metadata or sufficient training data
across different domains. In response to these challenges, this
study draws inspiration from data-efficient video captioning
methods, specifically prefix-based conditional generation. This
approach maps visual features into prefix tokens that condition
the action-prediction process. We introduce InvPatch, a frame-
work that builds on prefix-based conditional generation and
extends it by adding learned visual-representation compression.
In InvPatch, attention-based patch selection and pooling are
applied to features extracted from a ViT backbone, reducing
the conditioning input from a set of frame-by-frame features
to a single vector. We evaluate our framework across two
diverse settings: 3D third-person real world (KIT Bimanual
Actions) and 2D synthetic (MUGEN). Our method achieves
97.21% accuracy on MUGEN and surpasses state-of-the-art
results on KIT Bimanual Actions. Our sensitivity analysis
highlights the data efficiency of this approach, as InvPatch
maintains comparable performance even when trained with
30% less data. Additionally, our runtime analysis demonstrates
the computational efficiency of InvPatch, which requires fewer
trainable parameters and performs fewer FLOPs compared to
other methods.

I. INTRODUCTION

An Inverse Dynamics Model (IDM) is a mathematical
model that infers causal actions from observed outcomes.
IDMs have been employed across multiple fields to solve
tasks such as robotic control [1], musculoskeletal load es-
timation in biomechanics [2], and sequential action infer-
ence from gameplay footage in video games [3] to enable
supervised learning from unlabeled demonstrations [4]. One
approach to train IDMs is to use hand-crafted rules built from
high-level features [3]. Alternatively, IDMs can be trained to
infer actions directly from videos, but doing so requires large
labeled datasets and substantial computational resources [5].
This study builds on prior work on learning from videos,
aiming to reduce both the computational resources and the
amount of data required.

With these goals in mind, we introduce InvPatch, a novel
method for inverse dynamics modeling. InvPatch combines
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Fig. 1. High level overview of InvPatch: we learn a global video embedding
and use it to condition the action decoder to produce viable sequences of
actions (ag, ai, ..., ar) across T timesteps.

prefix-based conditional generation with a patch-level rep-
resentation aggregation strategy for integrating spatiotempo-
ral information from frozen pre-trained Vision Transformer
(ViT) [6] backbones. Prefix-based conditional generation
uses a vision model to map videos into prefix embeddings,
that guide the decoder in autoregressively predicting the
sequence of actions that generated the video. This method
was initially introduced for data-efficient image and video
captioning [7], [8], a task closely related to modeling inverse
dynamics over videos. Our InvPatch framework builds on
this line of work by introducing an aggregation layer (see
Fig. 1) that processes patch-level representations. This layer
identifies the most informative spatial regions over time via
attention-based selection and aggregates them into a single
global embedding. This embedding is used as the prefix
to condition the prediction of action sequences. The single
embedding strategy is informed by prior work demonstrating
both the substantial redundancy present in videos, especially
across consecutive frames [9], and the favorable performance
and compute trade-offs achieved when multiple input tokens
are represented by a single vector [10]. Additionally, repre-
senting the video as a single vector enables the use of video-
native backbones—such as VideoMAE [9]—which produce
strong representations but do not output frame-level features.

We evaluate the effectivenes of InvPatch across two ac-
tion prediction benchmarks: MUGEN [11] and KIT Bi-
manual Actions [12]. These benchmarks offer both real-
world and simulated environments viewed from 2D and 3D
perspectives. Our IDMs achieve up to 97.21% accuracy on
MUGEN and improve state-of-the-art performance on KIT
Bimanual Actions by 3%, demonstrating the effectiveness
of our approach. In addition, our proposed spatio-temporal
aggregation method outperforms all baseline methods, in-



cluding mean, max, and GeM pooling [13], attention-based
pooling [14], NetVLAD [15], and LSTM [16]. We also
show that InvPatch achieves comparable performance when
trained with 30% less data, demonstrating its data efficiency,
and confirm its computational efficiency through runtime
analysis. Finally, we examine how many frames InvPatch
can compress into a single representation; the results indicate
promising scalability in both frame compression and long-
horizon action prediction.

The key contributions of this paper are as follows. First, to
the best of our knowledge, this is the first work to introduce
prefix-based conditional generation for data-efficient inverse
dynamics. Second, InvPatch provides an efficient method
for aggregating information from pre-trained backbones; this
design outperforms common baselines, achieves near-optimal
accuracy on MUGEN, and improves the state of the art on
KIT Bimanual Actions. Finally, we evaluate the sensitivity
of InvPatch to data availability and the number of observed
frames, and demonstrate robustness across both dimensions.

II. RELATED WORK

Inverse Dynamics Models predict the action required to
transition from one state to the next given two consecutive
states [17]. IDMs are widely used in biomechanics and
sequential decision-making. In biomechanics, they estimate
joint forces and torques during human movement by com-
bining motion capture data with anthropometric models,
enabling detailed analysis of muscle and joint contributions
[2]. IDMs have also been applied in imitation learning, such
as transferring actions from simulation to real-world tasks
[18] or conditioning agents on task goals in visual envi-
ronments to predict action sequences [19]. They can reduce
action mismatches between expert demonstrations and agent
behaviour [20], and convert sequences of states into actions
to replicate trajectories [21], [22]. IDMs are further used
to expand training data: rule-based models have been built
for games like Counter-Strike: GO (Valve, 2012) [3], while
large-scale deep IDMs supported video-based pretraining in
environments such as Minecraft (Mojang, 2011) [S]. While
this study, like [5], [22], learns action sequences from video,
it differs in two key ways: first, we prioritize data efficiency
and compute-plausible training [5], and second, we introduce
prefix-based conditional generation as a distinct approach to
action-sequence prediction [22].

Image and Video Captioning models generate natural-
language descriptions of visual inputs. Early systems paired
CNN feature extractors with RNN caption generators [23],
[24], later replaced by transformer-based models [25], [26].
Recent work uses large-scale vision—language pretraining on
paired and unpaired data to improve accuracy and gener-
alisation [27]-[30]. Multimodal models like GPT-4V [31]
also enable automatic curation of high-quality video-caption
datasets [32]. Alternatively, prefix-based conditional gener-
ation methods guide language models with visual features,
enabling efficient captioning for images (ClipCap [7]) and
for both images and videos (DeCap [8]). While ClipCap
focuses solely on image captioning, DeCap employed image

captioning to video using a single global vector from mean-
pooled frame features. We extend prefix-based conditional
generation models like ClipCap and DeCap with a learned
patch-level feature pooling layer, producing richer represen-
tations that boost performance.

Global Video Representations aim to compress a se-
quence of local descriptors extracted at the frame or patch
level into a single embedding that captures relevant in-
formation such as motion dynamics. Simple, lightweight
approaches that do not require training include mean pooling,
which averages features over time to produce stable sum-
maries [33], and max pooling, which emphasizes the most
discriminative features [34]. Generalized mean (GeM) pool-
ing [13] generalizes these methods by learning an exponent
that interpolates between mean-like and max-like behaviour,
and has been used to aggregate frame-level features into
a compact global embedding [35]. Beyond fixed pooling,
structured encoding methods such as Vector of Locally
Aggregated Descriptors (VLAD) [15], [36] can be extended
to video by learning spatio-temporal codebooks. Local fea-
tures are assigned to learned codewords, and residuals are
aggregated across space and time into a compact video-level
descriptor [37]. Recurrent architectures like LSTMs sequen-
tially integrate temporal information to capture long-range
dependencies [38]. Attention-based pooling assigns adaptive
weights to frames or patches to highlight the most relevant
content [14]. Our aggregation layer, which produces global
embeddings for decoder conditioning, relies on attention-
based pooling. To improve computational efficiency, we
apply patch merging [39] and use a computationally efficient
variant of spatio-temporal attention [40].

III. METHOD

Figure 2 provides a high-level overview of the InvPatch
training procedure. We formalize this process below and
describe our architectural and training choices.

A. Problem Statement

Inverse dynamics from pixels can be formulated as learn-
ing a mapping f : X — S, where X is the space of
observed image sequences or videos and S is the space of
corresponding action sequences. An observation x € X is a
sequence of frames @ = (I, ..., IT), and an action sequence
s € S is given by s = (aj,...,ar), where each action
a; € A, and A is the actions space (i.e. a finite discrete set of
possible actions). In the general case T # L, since multiple
actions may occur within a single timestep. For notation
simplicity, however, we assume that exactly one action is
associated with each frame, so 17" = L, and we treat both X
and S as spaces of sequences of length 7. Given a dataset
D of N paired videos and action sequences {z;,s;}~,
where ©; = (l;1,...,L;7) and s; = (a;1,...,a;7) the
goal is to learn a function f that maps an unseen video z;
to its corresponding action sequence s; = f(z;). We train f
by maximizing the conditional log-likelihood of the action
sequence given the video. Formally, the training objective is:
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Fig. 2. Overview of the training pipeline including a high-level architectural description of InvPatch. Blue components indicate evaluation mode, while

green components represent trainable InvPatch modules. We first extract patch-level representations from a ViT backbone, then aggregate them into a single
vector. This aggregated vector is prepended to the action embeddings and passed to the transformer decoder. Finally, we compute a cross-entropy loss

between the predicted and ground-truth actions.

N
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where 6 denotes the model’s trainable parameters. Following
ClipCap [7] and DeCap [8], we utilise the condition as a
prefix to the action sequence s;, and apply an autoregressive
model to predict the next token. Thus Eq. (1) can be rewritten

to describe our training objective as follows:
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B. Aggregation layer

Prior work [9] shows that videos contain substantial pixel-
space redundancy across consecutive frames. We posit that
this redundancy further extends to the intra-frame region
level, where many areas provide minimal information for
inverse dynamics prediction. To address this, we propose
filtering redundancy in representation space to produce an
informative single vector representation. The input to our
aggregation layer consists of patch-level embeddings from a
frozen ViT backbone. We first apply attention-based patch
merging [39]. For each frame I, let H; = (hy,...,ho)
denote the sequence of patch embeddings. We group image
patches into contiguous 2 x 2 local windows and perform
attention-based aggregation. This yields merged patch em-
beddings H,, reducing the sequence length by a factor of
four. This hierarchical merging serves two key purposes:
a) eliminating low-information regions, and b) lowering
computational cost since self-attention scales quadratically
with token count. This efficiency gain enables training our
IDMs on a single RTX 3090 GPU. We then apply a
Cross-frame Communication Transformer [40] that uses two
components: Cross-frame Fusion Attention (CFA) and Intra-
frame Diffusion Attention (IFA). Together, these provide

a more computationally efficient variant of spatio-temporal
attention. For each patch sequence H, we prepend a learn-
able embedding fg,, which serves as the representation of
frame I;. Information is exchanged across frames through
an auxiliary message token m,, generated online as a linear
transformation of fg, and later discarded. CFA operates on
all message tokens M = (my, ..., mr) to capture the global
spatio-temporal dependencies of the input video as follows:

M = M + CFA(LN(M)) 3)

where M = (... ,7m7), and LN denotes layer nor-
malization. Next, we concatenate (—~) each fg, with its
corresponding 7; and apply IFA. This allows fg, to incor-
porate the temporal cues aggregated in m; while retaining
frame-specific semantics. Afterward, the message token is
discarded, and only the frame token is kept. Formally:

fg', ~m; = fg, ~ my + IFA(LN(fg, —~ 1))

4
fi, = fg', + FEN(LN(fg',)) @

where FFN denotes a feed-forward network. Finally, a
simplified ViT with 2D positional encodings processes the
sequence of frame features (fg, ..., fg,). This module treats
the video as a spatial grid, interpreting motion as spatial
variation [32], and outputs the final global embedding g.

C. Decoder

To predict action sequences conditioned on visual repre-
sentations, we adopt a decoder-only transformer following
[8]. The decoder is equipped with an embedding layer F,
implemented as a lookup table of learned vector representa-
tions indexed by actions, which is standard in transformer
architectures. This layer maps action sequences into the
embedding space used by the model. The size of the lookup
table matches the size of the action space A. The embedding
vectors are trained jointly with the decoder and the visual
information aggregator networks.



D. Training procedure

Visual patch features are extracted for each video z; using
a backbone network B operating in evaluation mode with
frozen weights. The resulting patch embeddings are then
processed by our trainable aggregation layer denoted as G,
which maps them to a single vector representation g; =
G(B(z;)). Subsequently, we map action sequence s; to em-
bedding space using the embedding layer FE, (eq,...,er) =
E({@ia,--.,a;7)). Finally, we concatenate the prefix em-
bedding with action embeddings obtained from the decoder
as follows z; = [g;;e1 : er|. During training we feed the
decoder network with the concatenated embeddings {2;} Y .
Our training objective is predicting the action sequence §
conditioned on the prefix in an autoregressive fashion. For
that purpose, we train the decoder and aggregation layer
based on the training objective in Eq. (2) by minimising the
cross entropy loss Log between the generated and ground
truth actions.

IV. EXPERIMENTS

We design our experiments to assess the action prediction
performance of InvPatch, evaluate the impact of our proposed
spatio-temporal aggregation approach, and validate our goals
of strong data and computational efficiency.

A. Datasets

MUGEN [11] is a synthetic dataset of 375K video clips
generated from the CoinRun platformer [41]. Each clip is
3.2s long at 30Hz and is accompanied by a JSON file
containing frame-level metadata: position on the map (x,y)
and positional change between consecutive frames (Ax, Ay).
Seven actions are possible: inaction, move left, move right,
jump, descend, jump left, and jump right. We randomly
sample a subset of 2,500 clips (2h20m) and extract ac-
tion sequences from the metadata. We use this dataset as
a controlled 2D setting that differs from natural images,
challenging visual backbones trained on real-world data.

KIT Bimanual Actions Dataset (BIMACS) [12] contains
540 recordings from 6 subjects performing 9 tasks, each
repeated 10 times. In the BIMACS dataset, 14 actions
can be performed by the left and right hands: idle, ap-
proach, retreat, lift, place, hold, pour, cut, hammer, saw,
stir, screw, drink, and wipe. Recordings were made in two
settings—Xkitchen and workshop—and total 2h18m. Each
clip, averaging around 15 seconds, shows a single person
performing a complex everyday task. The dataset includes
frame-wise action labels for all 14 actions. We use this
dataset as a real-world benchmark with a third-person camera
perspective.

B. Experimental Setup

Inverse Dynamics. We evaluate the overall performance
of action prediction and assess the impact of the proposed
aggregation layer. Following prior work [3], [9], we use
input sequences of 16 frames. For MUGEN, sequences are
grouped by video ID, while for BIMACS we group the data
by subject, task, and repetition to ensure a strict separation

between training and test sets. We perform 5-fold cross-
validation (CV). Action sequences have a fixed length: 16 for
MUGEN, with one action per frame, and 32 for BIMACS,
with two actions per frame (left and right hand).

Sensitivity Analysis. We conduct two sensitivity analyses:
(a) training set size, where we reduce the number of training
samples to assess data efficiency; and (b) embedded frame
count, to evaluate how the number of frames compressed
into a global embedding—and the resulting action sequence
length—affects performance. For (a), we use 16 frames and
vary the training set size to 80%, 50%, 20%, and 10% of
the data. For (b), we vary the number of frames (4, 8, 16,
32) while keeping the global embedding size fixed, using an
80/20 train—test split. Both experiments are run three times
with randomly sampled train—test splits.

Evaluation Metrics. We adopt metrics commonly used
in inverse dynamics modeling and sequence generation.
Specifically, we use: (a) action classification accuracy and
precision [42]; (b) BLEU@4 [43], which measures n-gram
precision between generated and reference sequences; and (c)
METEOR [44], which computes a recall-weighted harmonic
mean of unigram precision and recall, following [8].

Baselines. For comparison with prior prefix-based con-
ditional generation methods, we test InvPatch against a
ClipCap-inspired model [7] conditioned on multiple frame-
level embeddings (the backbone’s pre-trained CLS token)
and a DeCap-inspired model [8] conditioned on a single
embedding obtained via simple pooling (mean or max).
To contrast frame and patch level aggregation strategies,
we apply several aggregation methods to frame-level (CLS
token) features: GeM pooling [13], LSTMs, attention-based
pooling [14], and NetVLAD [15] for quantization-based
pooling. The same methods are employed to consider patch-
level features, with LSTMs applied first across the temporal
dimension of each patch, followed by mean pooling across
the spatial dimension.

Implementation Details. Our method is implemented in
PyTorch [45], and all experiments run on a single NVIDIA
RTX 3090 GPU, demonstrating computational feasibility.
Training uses the AdamW optimiser [46] for 90 epochs with
a batch size of 64 and a learning rate of le-4, warmup over
the first 10% of epochs, and cosine decay thereafter. We use
two vision encoders, VideoMAE [9] and DINOv2 [47], both
in the ViT-B variant to ensure computational feasibility, and
widely adopted for video representation learning [48], [49].
The decoder is a 4-layer GPT-2 [50] model with embedding
size 768.

V. RESULTS

Inverse Dynamics. Table I reports results on the MUGEN
dataset. As this is the first use of MUGEN for IDMs, we
include two simple baselines—random (row 22) and major-
ity action (row 23)—for context; all tested configurations
outperform them. Aggregating features into a single global
video embedding does not degrade performance; in fact,
global embeddings outperform the per-frame configuration
(row 1) by 10%, even when using frame-level features (row



TABLE I
MUGEN DATASET: INVERSE DYNAMICS RESULTS MEAN + 95% CI OVER 5-FOLD CV; HIGHER IS BETTER. BOLD MARKS THE BEST PER METRIC AND
BACKBONE, AND BOLD AND UNDERLINED THE OVERALL BEST. SIMPLE BASELINES INCLUDED FOR CONTEXT.

Embedding  Decoder Input Aggregation Method  Backbone Accuracy Precision B@4 METEOR
Frame Frame Embeddings  CLS token DINOv2 54.97+£0.86  53.73+0.88  54.03+0.68  58.83+0.69
Mean Pooling 4165028 40.133041 42712027 47.772036
Max Pooling 40.69+0.49  39.39+0.55 41.94£040  47.09+0.48

. GeM Pooling 39.77:0.77 38.83:0.52 40.82+0.76  45.87+0.75

Frame Global Embedding - \1oy1 Ap DINOV2 37831168 31494157 32024148 36.67+1.41
LSTM 64.92+1.01 6414098 62.611.07 67.18+1.03
Attention Pooling 63.30:0.82  62.82+0.89 62.80+0.88  67.73+0.87

Mean Pooling 41042057 39402072 41702054  46.6620.55
Max Pooling 15594229 42.63x1.55 13.10£2.12  16.07+2.39
GeM Pooling 40.76:0.54 38.87+0.68 38.39+0.68  42.44+0.72

NetVLAD DINOV2  60.56+143 58924136 62.68+124 6841111

LSTM 87.924021 87.76:0.25 88.38+0.27  91.74+0.23

Attention Pooling 74243049 73.610.51 77712037  82.51£0.29
. IwPaich (ours) 94.01:0.36 93.88+0.36 93.48+0.24  95.75:0.10

Patch Global Embedding  —gr =5 cre 76.19%0.57  75.1820.62 78212058 82572049
Max Pooling 7483:048 7385045 79.43x038  79.43038
GeM Pooling 71.58+1.00 69.43+1.27 71.23+1.68 75.95+1.62

NetVLAD VideoMAE ~ 69.26+1.16  67.524129  70.70+147  75.72+1.51

LSTM 04724022  94.68+0.23 94.09+0.20  96.29+0.09

Attention Pooling 02.80+022  92.79+0.22  92.40£0.20  94.91%0.18
InvPaich (ours) 97.21:0.18 97.20:0.18 96.190.16  97.6620.13

Random Action 13402018 20232038 4412005 18.1220.15

Majority Action 31572082 9.972051 284720.74  33.0020.85

TABLE II

BIMACS DATASET: INVERSE DYNAMICS RESULTS MEAN *+ 95% CI OVER 5-FOLD CV; HIGHER IS BETTER. BOLD MARKS THE BEST PER METRIC AND
BACKBONE, AND BOLD AND UNDERLINED THE OVERALL BEST. SIMPLE BASELINES INCLUDED FOR CONTEXT. BIGNN RESULTS REPORTED PER [42].

Embedding  Decoder Input Aggregation Method  Backbone Accuracy Precision B@4 METEOR
Frame Frame Embeddings _ CLS token DINOv2 79.50£097 79.54%007 72.35%1.32  73.00£1.07
Mean Pooling 77035137 77.5240.04 69.20+1.78  70.62%1.39
Max Pooling 78.23+0.86  78.03+0.70  70.82+1.20  72.10£0.99
. GeM Pooling 77.10£1.11  77.97#0.88  69.19+1.23  70.66+0.92
Frame Global Embedding vy Ap DINOv2 74013075  70.68+1.25 63.80+1.05 61.412.10
LSTM 83.61+1.06 83.46£0.99 77.17+1.22  77.50+1.05
Attention Pooling 83.57+0.90 83.28+0.87 77.38+1.19  77.12%0.87

Mean Pooling TI47£1.28  7691+1.04 69.14+1.54 71.01=L.11
Max Pooling 74.01£0.75  70.68+£1.25 63.80+1.05 67.270.70
GeM Pooling 73.8740.51 70474073  64.18+0.78  67.3420.58
NetVLAD DINOV2 78.88+1.23  78.70+1.21  70.47+1.57  71.44+1.48
LSTM 84.34+0.61 84.28+0.65 78.06£0.60  78.120.59

Attention Pooling 81.09+0.99  81.17+0.97 73.83x1.19  74.28+0.95
. InvPatch (ours) 87.56:0.51 87.49+047 81.24:1.14  81.13:0.66
Patch Global Embedding  —xz 50 e 80.0220.88  79.6020.80 71.60£1.28  73.29£0.86
Max Pooling 69.69+0.88  66.37+£1.00 57.73+1.32  62.48+0.85

GeM Pooling 69.72+0.67  67.3120.61  57.03+1.06  62.03£0.79

NetVLAD VideoMAE ~ 72.952220 72.73+2.07 62.66£3.01  65.93+2.28
LSTM 85.54+0.79  85.42+0.80 78.67+1.30  79.10+0.94
Attention Pooling 85.66+0.90  85.56+0.85 78.73x0.98  79.10+0.74
InvPatch (ours) 88.99+0.69 88.89+0.70  83.07+0.88  82.80+0.62

Random Action 7512021 14258030  1.8720.02 _ 8.7620.10

Majority Action 23.635028  5.59+0.13  5.3748.03  14.25%4.87

BiGNN [42] 87.00£0.00 _ 85.000.00 - -

6). Global embeddings trained on patch-level representations  level (rows 1-7) versus patch-level (rows 8-13) represen-
provide larger gains—approximately 35% with the DINOv2  tations on the same backbone shows little difference for
backbone. Comparing global embeddings trained on frame-  simple pooling methods (rows 2-4 vs. 8-10), except for
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InvPatch Confusion Matrix Analysis. We present confusion matrices aggregated over 5 folds, with sample counts shown on a logarithmic scale

due to the large number of samples, for the VideoMAE 16-frame configuration: (a) MUGEN dataset; (b) Left-hand action classification for the BIMACS

dataset; (c) Right-hand action classification for the BIMACS dataset.

max pooling, which performs worse with patch features.
In contrast, trainable aggregation methods perform better
with patch-level (rows 11-13) than frame-level (rows 5-7)
representations, by up to 23%. This suggests that patch-level
training better handles distribution shifts, as MUGEN differs
from the real-world data used to pretrain DINOv2 and its
CLS token. With DINOv2, InvPatch improves all metrics by
roughly 30% over the best frame-level baseline and yields
an average 6% gain over the next-best LSTM patch-level
baseline. With VideoMAE, InvPatch improves accuracy and
precision by 2.5%, and BLEU@4 and METEOR by 2% and
1.4%, respectively. The best configuration (InvPatch with
VideoMAE) achieves a near-optimal accuracy of 97.21%.

Results on the KIT Bimanual Actions Dataset (see Ta-
ble II) show that, again, all tested configurations outperform
the simple baselines (rows 22-23). Aggregating to a global
embedding improves performance compared to passing mul-
tiple frame-level embeddings, by up to 9%. The performance
gap between frame-level (rows 2-7) and patch-level (rows
8-14) embeddings on the same backbone is smaller than
on MUGEN. The best baseline aggregation method (LSTM)
improves by only about 0.8% when trained with patches (row
12) instead of frames (row 6). This likely reflects the distribu-
tional similarity between BIMACS and the pretraining data,
which makes the DINOv2 CLS token better aligned with
the dataset. State-of-the-art results on this dataset obtained
with a similar evaluation setup—such as those reported in the
BiGNN study [42] (row 24)—report accuracy and precision
of 87% and 85%, respectively. Combined with DINOv2,
our method achieves comparable accuracy and improves
precision by about 2%. Combined with the VideoMAE
backbone—the best overall configuration—it yields roughly
a 1.5% gain in accuracy and a 3% gain in precision. Impor-
tantly, BIGNN relies on bounding boxes, whereas InvPatch
uses only videos.

Confusion Matrix Analysis. We present confusion ma-
trices of Inverse Dynamics results for our best-performing
VideoMAE configuration. For the MUGEN dataset (see
Fig. 3a), most predictions lie on the diagonal, indicating
correct classification. Confusion mainly arises for jump (61%

correct, 2,000 occurrences), inaction (89%, 11,000), and left
jump (92%, 16,000), the three least represented actions.
BIMACS results are split into left- and right-hand confusion
matrices (see Figs. 3b-c). Both show strong diagonal in-
tensity with minimal differences between hands. Ambiguity
is highest for approach (left 74%, right 70%), retreat (left
70%, right 67%), lift (left 70%, right 76%), and place (left
80%, right 83%), reflecting challenges in temporal depth
perception and vertical direction estimation. Notably, these
actions are not among the least represented, all having more
than 10,000 examples, whereas some actions such as drink
with the left hand reach 92% accuracy despite fewer than
1,000 examples. Vertical errors may stem from pretraining
augmentation, while depth perception issues could arise from
the aggregation method, which may introduce errors by
treating motion as spatial variation. In conclusion, InvPatch
generally classifies actions correctly, but future improve-
ments could include selecting backbones with augmentations
that better preserve directional cues and refining aggregation
to enhance depth perception.

Training Set Size: Sensitivity Analysis. Figure 4 shows
results for varying training set sizes, evaluating accuracy
degradation as data is reduced. All experiments employ the
best-performing configuration: i.e. VideoMAE with InvPatch.
For space considerations, we report only classification accu-
racy. On MUGEN, accuracy decreases with modest drops
of roughly 2% for the first two reductions and about 3%
for the last. Even with only 10% of the training data, the
model still achieves nearly 90% accuracy. BIMACS shows a
similar trend initially: using 50% of the data yields a mean
accuracy of 86.82%. The decline becomes more pronounced
at 20% and 10%, which can be explained by differences
in the demonstrations across the 10 repetitions. One or two
demonstrations do not capture enough of the different ways
the same action can be performed.

Embedded Frame Count: Sensitivity Analysis. Figure 5
shows the impact of compressing different numbers of input
frames into a single global embedding on model perfor-
mance. As with the earlier experiments on training set size,
experiments reported here use the best-performing configura-
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tion: VideoMAE with InvPatch. Due to space considerations
we only report the classification accuracy obtained. Using 4
or 8 frames in MUGEN yields the highest accuracy, while
increasing the number of frames to 16 and 32 leads to
accuracy drops of 1% and 4%, respectively. For BIMACS,
8 and 16 frames perform the best, while 4 frames yield
roughly 1% lower performance, and 32 frames, result in a 3%
decrease. The drop in the 4-frame configuration for BIMACS
is likely due to prediction on this dataset benefiting from
additional temporal context. The decline in the 32-frame
setting across both datasets likely reflects the fixed size of
the final embedding vector, which becomes limiting as more
frames require larger representations. Still, the gradual nature
of the drop suggests that compressing multiple frames into
a single embedding, and conditioning on it, remains feasible
for longer sequences.

Runtime Analysis. Our best-performing configuration
uses 16 frames with a frozen VideoMAE ViT-B backbone
and 74M trainable parameters (45M in aggregation, 29M in
the decoder). The frozen backbone requires 33.8 x 10° float-
ing point operations (FLOPs) per sample and is computed
once, then reused during training and inference. InvPatch
adds 13 x 10° FLOPs during training, mostly from aggre-
gation. At inference, aggregation is performed once and the
decoder runs autoregressively, totaling 20.5 x 10° FLOPs
for 16 frames, or 54 x 10° FLOPs per sample including
the backbone, with an inference time of 41.8 ms for a
16-action sequence. For comparison, VPT [5] has 500M
parameters and requires 4.4 x 1012 FLOPs with 128 frames;
even with 16 frames it still requires 550 x 10° FLOPs. Recent
vision—language—action models are substantially larger, with
smaller variants such as OpenVLA [51] reaching 7B param-

eters and an estimated 3.3 x 102 FLOPs [52], as it builds
on LLaMA-2 [53]. Overall, InvPatch is a more cost-effective
and efficient alternative to contemporary methods.

VI. DISCUSSION

Limitations. This study focused on data and compute
efficiency and was conducted on datasets with fixed-length
action sequences. Although our sensitivity analysis suggests
that InvPatch can scale to longer sequences, we did not
evaluate variable-length sequences, which are common in
real-world scenarios. Due to limited computational resources,
we also did not study scalability with increasing data and
compute, which prevented a full comparison with contem-
porary methods such as VPT [5] or vision-language-action
models like OpenVLA [51], beyond runtime analysis.

Future Work. We plan to extend the evaluation to
more complex domains, including egocentric video and
autonomous driving, which involve variable-length action
sequences from overlapping activities (e.g., navigation and
tool use, or simultaneous control of steering, throttle, and
braking). We will evaluate on both synthetic and real-
world datasets: Minecraft [5] for simulation, Ego4D [54]
for egocentric actions, and CARLA [55] with HDD [56] for
autonomous driving. Another direction is to study general-
isation and train a single model across environments, this
requires explicit evaluation of the generalisation capabilities
of pre-trained vision backbones for fine-grained action pre-
diction, as well as the development of a multi-environment
action tokenizer.

VII. CONCLUSION

This paper introduces InvPatch, a novel method for inverse
dynamics modeling that combines prefix-based conditional
generation with a patch-level representation aggregation
strategy for integrating spatiotemporal information from pre-
trained ViT backbones. We evaluated InvPatch: a 2D plat-
former game (MUGEN) and 3D third-person demonstrations
from the KIT Bimanual Actions dataset. Our best config-
uration surpasses all baselines, achieving 97.21% accuracy
on MUGEN and improving the state of the art on the KIT
Bimanual Actions dataset by approximately 3% in both
precision and accuracy. Combined with our sensitivity and
runtime analyses, InvPatch is shown to be an efficient and
robust method for inverse dynamics modeling, highlighting
its potential to advance research in action understanding and
control through videos.
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