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Abstract—This paper describes a search-based generative
method which creates game levels by evolving the intended
sequence of player actions rather than their spatial layout. The
proposed approach evolves graphs where nodes representing
player actions are linked to form one or more ways in which
a mission can be completed. Initially simple graphs containing
the mission’s starting and ending nodes are evolved via mutation
operators which expand and prune the graph topology. Evolution
is guided by several objective functions which capture game
design patterns such as exploration or balance; experiments
in this paper explore how these objective functions and their
combinations affect the quality and diversity of the evolved
mission graphs.

I. INTRODUCTION

Procedural content generation (PCG) in games has received
considerable academic interest in the last decade, exploring
different ways to represent, generate and evaluate game con-
tent such as rulesets, card decks, puzzles, weapons, terrain,
etc. Among the most prominent generative techniques being
explored are search-based techniques [1] which often use
artificial evolution to explore a vast search space guided by
an objective function, constraint-based techniques [2] which
carefully define the space of viable solutions, and generative
grammars [3] which define the creation and expansion rules
of an artifact and can gradually increase its level of detail.

The vast majority of PCG research focuses on game level
generation, following the trends of the game industry where
PCG primarily creates game spaces such as the dungeons
of Diablo (Blizzard 1996), the gameworlds of Civilization V
(Firaxis 2010) or the mansions of Daylight (Zombie Studios
2014). While commercial games primarily use constructive
generative techniques [1], academic interest in PCG has moved
beyond this narrow focus and has tested a broad variety of
techniques, representations, and types of game levels which
can be generated. Most often, such generators create the level’s
layout and then evaluate its spatial characteristics such as its
navigable regions [4] or functional characteristics derived from
e.g. playtraces of artificial agents running through it [5]. In
the case of [6], the generator creates a tile-based layout of
a dungeon for a role-playing game adventure module, which
is then used to derive a room connectivity graph for placing
encounters to follow the progression of a player from the
dungeon’s entrance. However, an inverse generative process
is also possible, where the structure of the player experience
(with all its possible variations and branches) is generated first
and is used to derive the spatial structure of the game level.

This paper presents a search-based approach for generat-
ing levels through an indirect representation, evaluating and
evolving the player’s sequence of possible actions rather than
the explicit sequence of rooms they have to visit. While the
level geometry and the action sequence are linked (i.e. the
latter constrains the former), the action sequence is a more
concise representation as it does not contain trivial information
such as empty rooms or walls. Moreover, the action sequences
are represented as a graph of nodes while game levels tend
to be represented as some form of bit array [7]; this allows
the design of genetic operators (for adding, removing, or
connecting nodes) which have a better locality and result
in non-trivial yet non-destructive changes to the phenotype.
Finally, parsing the graph directly allows for fast and simple
evaluations of the decision density of a player traversing a
level from start to finish. The paper focuses on the generation
of mission graphs for the dungeon crawl game Dwarf Quest
(Wild Card Games 2013), with nodes representing the start
and end of the mission, puzzles, rewards and combat sections.
Results show that many different types of mission graphs
can be generated, from simple, short playthroughs to complex
structures with multiple paths to the goal. The Dwarf Quest
levels created from these mission graphs similarly range from
straightforward and short to maze-like and grueling.

II. RELATED WORK

Procedural content generation has been used in the game
industry, and primarily for the generation of game levels,
since the 1980s with games such as Rogue (Toy and Wichman
1980) and Elite (Acornsoft 1984). Level generation has only
increased in scale and commercial appeal in recent years with
games such as Minecraft (Mojang 2011) and No Man’s Sky
(Hello Games 2016) embracing it as a major selling point.
Academic interest in level generation is similarly extensive,
with levels for first person shooters [4], puzzle games [2], side-
scrolling platformers [8], strategy games [9] and many other
game genres being generated using a diverse set of techniques.

Particularly relevant to the current work are search-based
and grammar-based techniques for generating levels. The
family of search-based PCG [1] methods attempt to gradu-
ally improve a level by applying local changes; most often,
artificial evolution is used and the local changes take the form
of mutation of tiles in a grid-based map or recombination of
the layouts of two parents to create offspring that combine the
features of both parents. In search-based PCG, it is common



to select the most promising parents to create the next batch of
results (generation) based on a quantifiable objective function
which evaluates how appropriate a game level is: examples
include the length of its paths [9], the combat duration between
artificial agents [4] or the distribution of its treasures [5].

As their name suggests, grammar-based techniques take
advantage of generative grammars, which represent a set of re-
write rules which transform expressions. Although originally
designed to analyze and classify language phrases, grammars
can be used to transform any expression. For level generation,
grammars have been described and used extensively by Dor-
mans [10] while the most well-known commercial application
of grammar-based level generation is Spelunky (Mossmouth
2008) [11]. At its core, a generative grammar is a set of rules
which can be iteratively applied to increase the complexity
of an expression (e.g. a game level). Such rules can frame
the problem (e.g. dungeon → obstacle + treasure) or can be
recursive (e.g. obstacle → monster + obstacle). If multiple
rules can be applied to the expression, one is chosen randomly.

The dual representation for game levels (as a mission
and as a space) was first introduced in [3] and expanded
in [10], where the mission graph was created via a graph
grammar while the architecture was built from shape grammars
which rewrite mission nodes into rooms of various sizes.
The paradigm was applied to the game Dwarf Quest in [12],
where both mission graph and layout was created through
grammars: the layout solver places rooms on a 2D grid based
on the mission graph, obeying requirements on planarity and
orthogonality and applying pre-processing steps as needed to
repair non-conforming missions. In [13], the generation of
missions and spaces in Dwarf Quest was enhanced through
a human-computer interface that allowed a human designer to
interject in (or replace) the generative grammars with her own
intuitions. The tool allowed the designer to create missions
in varying levels of detail, e.g. authoring a rough sketch of a
mission and allowing the generative grammars to expand on
that sketch automatically (or with some human curation).

III. METHODOLOGY

This paper uses search-based techniques to evolve a mission
graph representing the player’s possible action sequences,
which is then used to create a level architecture for Dwarf
Quest (Wild Card Games 2013). The representation of the
mission graph and the types of nodes it can contain is
described in III-A, the details of the evolutionary approach
and its mutation operators in III-B, the objectives which drive
evolution in III-C, and finally the methods for converting the
evolved mission graphs into game levels in III-D.

A. Mission Representation

The evolved artifacts consist of mission graphs represented
as a list of nodes and edges. The nodes represent abstract
player actions, such as solving a puzzle. This abstract action
will later be transformed into a specific action by a grammar,
which is then transformed by a layout solver into one or
more rooms where gameplay will take place. A more detailed

Fig. 1. In-game screenshot of Dwarf Quest (Wild Card Games 2013), showing
a fight node with doorways to two adjacent rooms.

TABLE I
LIST OF POSSIBLE NODE TYPES SPLIT INTO CATEGORIES.

Neutral Reward Fight Puzzle
Start RandomItem Enemy DoorPuzzle
End HealthPotion Boss BridgePuzzle

BattleCard ChestPuzzle
Treasure FloorTrap
Altar

description of this process is provided in [13]. There are 14
types of nodes described in Table I, split into four categories:
fight, puzzle, reward, and neutral. Fight nodes involve ac-
tive opposition from monsters, puzzle nodes involve passive
opposition (e.g. locked doors), while reward nodes have no
opposition but provide power-ups for future fights1. Neutral
nodes are the start node, where the player is initially placed,
and the end node where the player completes the level; the
goal of the mission is to traverse the graph starting from the
start node and reaching the end node. For evolution, each node
is stored as an integer acting as the identifier of its node type.

Edges connect two nodes, and are represented by three
parameters: the index of the starting node, the index of the
ending node, and a flag on whether the edge is directed.
For example, edge(0,1,false) represents a bidirectional
edge between element 0 and element 1 in the node list. Since
the corridors in Dwarf Quest are bidirectional the current work
ignores the third parameter, but this representation supports
other game modes involving e.g. one-way portals.

B. Mission Evolution

The generative approach followed in this paper evolves an
initial population of individuals in order to maximize a fitness
function consisting of one or more objectives (covered in
III-C). The initial population consists of identical individuals
representing the simplest possible mission: a start node, an end
node and an edge between them. The following generations
increase the topology of these initial individuals, and after
the first generation the selection process favors individuals
with a higher fitness. The algorithm uses an elitism of 10%,

1Among the reward nodes, battle cards act as one-time powerups while
altars function like a shop in which potions and battle cards may be purchased.



TABLE II
LIST OF MUTATION OPERATORS.

Name Description
Insert Node A randomly chosen edge is split and a random node

is inserted between the edge’s start and end nodes, con-
necting the inserted node via two edges to the initial start
and end nodes. This creates longer action sequences.

Add Node As the insert node operator except the chosen edge is
not deleted, providing multiple paths between its start
and end nodes (directly or indirectly via the new node).

Change Node A randomly chosen non-neutral node changes into a
random other non-neutral node type.

Delete Node A randomly chosen non-neutral node is deleted with the
following constraints: if the node has one edge, both
the node and its edge is deleted; if the node has two
edges, an edge is added linking the nodes connected to
the deleted node; nodes with 3 or more edges are not
deleted as it would be too destructive.

Add Edge Two randomly chosen nodes are connected with a bidi-
rectional edge. This can create duplicate edges, except
when the individual only contains a start and an end
node (in which case this mutation can not be applied).

Delete Edge A randomly chosen edge is deleted, unless it is a node’s
last edge.

making copies of the fittest parents in the next generation;
the remaining individuals in the next generation are mutations
of parents chosen via fitness-proportionate roulette wheel
selection. The same parent can be selected multiple times, thus
generating multiple mutated offspring. Evolution is carried
out via mutation alone, and each offspring is a copy of its
parent to which multiple mutation operators can be applied
based on a probability. Several mutation operators are designed
in order to change the topology of the mission graph while
obeying constraints to avoid undesirable results. The mutation
operators are summarized in Table II. Mutation operators are
not allowed to place more than one boss node and more than
one altar node per level; other node types are chosen in those
cases. The mutation probabilities are based on preliminary
testing and favor adding nodes and edges over deleting them,
as the latter is more disruptive in most fitness landscapes.

C. Mission Objectives

There are several desirable patterns that evolved mission
graphs should exhibit. Inspired in part by the general design
patterns of [14] and their mathematical formulations in [15],
five fitness dimensions are designed to drive evolution (alone
or combined into a weighted sum). Steps have been taken
to convert all the metrics into a [0,1] value range, with high
scores representing more desirable content. Designer intuition
was applied to specify the desirable value ranges of several of
these metrics (e.g. a desired shortest path of 5 to 10 nodes).
• Shortest Path. The number of nodes along the shortest

path between start and end nodes (ds,e) is normalized by
eq. (1) to give optimal scores to paths with 5 to 10 nodes.

fp = min
{
(1 + e3−ds,e)−1, 1− (1 + e13−ds,e)−1

}
(1)

• Exploration. Inspired by [15], this function uses flood
fill from the start node to evaluate how much the player
will need to explore the level before reaching the end

node. Eq. (2) normalizes this metric to give optimal
scores to exploration covering three times as many nodes
as the shortest path.

fe = 1− 1
3 |Fs,e − ds,e| (2)

where Fs,e is the number of nodes covered by a flood fill
algorithm starting from the start node and stopping once
the end node is covered.

• Variation. The percentage of edges that connect nodes of
different categories, excluding start and end nodes.

fv =
Ed

E
(3)

where Ed is the number of edges connecting non-neutral
nodes of different categories (e.g. a fight node and
a reward node), and E is the total number of edges
connecting non-neutral nodes.

• Dispersed rewards. Based on [15], eq. (4) evaluates the
number of nodes considered safe to rewards (i.e. nodes
which are much closer to one reward node versus all other
reward nodes).

fa =
1

N

R∑
i=1

Ai (4)

where N and R is the number of nodes and reward nodes
in the mission, respectively, and Ai the number of nodes
with a safety score for reward i above a threshold of 0.35.
Details of how safety is calculated can be found in [15].

• Balanced rewards. Based on [15], eq. (5) evaluates
whether every reward has an equal number of safe nodes
around it as every other reward.

fb = 1− 1

R(R− 1)

R∑
i=1

R∑
j=1
j 6=i

|Ai −Aj |
max{Ai, Aj}

(5)

D. From Mission Graphs to Levels

In order to create the game’s final levels, evolved mission
graphs are interpreted by the layout solver described in [12],
which is in turn constrained by the map options of the Dwarf
Quest game. Due to these constraints, three post-processing
steps must be applied on the evolved mission graphs:

1) The room with the player’s spawn point (start node) has
only one corridor. If the start node has more than one
edge, we create an empty node linked to the start node
and move the start node’s edges to the empty one.

2) If there are three nodes that are all pair-wise connected,
the layout solver cannot decide which of the rooms
to place first. To solve this, we insert an empty node
between one of the edges.

3) Dwarf Quest rooms must have at least two corridors:
non-neutral nodes with only one edge are omitted.

Furthermore, the layout solver considers the edges between
nodes as directional edges, even though they are not imple-
mented as such in Dwarf Quest, and uses them to determine
the relative positions of the rooms. To achieve that, a flooding



TABLE III
MEAN FITNESS SCORES (AND THEIR STANDARD DEVIATION) OF THE FITTEST INDIVIDUAL AFTER 100 GENERATIONS.

Fitness fp fe fv fs fb

Single Objective 0.99 (0.00) 0.67 (0.21) 1.00 (0.00) 0.68 (0.18) 0.99 (0.02)
fp+fe 0.90 (0.05) 0.84 (0.10) – – –
fe+fv – 0.70 (0.25) 0.99 (0.03) – –
fv+fa – – 1.00 (0.00) 0.67 (0.08) –
fp+fe+fv 0.87 (0.09) 0.64 (0.12) 0.98 (0.03) – – –
fp+fe+fa 0.91 (0.07) 0.83 (0.12) – 0.73 (0.03) –
All 0.89 (0.08) 0.67 (0.17) 0.95 (0.04) 0.67 (0.03) 0.71 (0.02)

algorithm turn the bidirectional edges of the mission graph
into directed ones, based on each node’s distance to the start.
If the result has nodes with only incoming or outgoing edges,
an edge is chosen (based on the distance of its linked node to
the end node) and its direction is flipped.

IV. RESULTS

The experiments in this paper assess the performance of
evolution on mission graphs optimizing each objective indi-
vidually, optimizing all objectives simultaneously, and a few
sample combinations of objectives. Each experiment included
20 independent runs of 100 generations, on a population of 100
individuals. The reported values are averaged from these 20
runs, and the standard deviation is displayed in parentheses
or error bars (in tables and figures respectively). Statistical
significance tests are performed via two-tailed Student’s t-tests
(assuming unequal variance) with a significance threshold of
5%. Since post-processing only contributes to the interpreta-
tion of the mission and not to the mission itself, the results
below are based on the graphs before post-processing.

A. Optimization Performance

Table III displays the average scores in several fitness
dimensions of the fittest evolved individuals after 100 gener-
ations. Results are derived from optimization runs targeting a
single objective (in the single objective row), all objectives
and a sample of the possible combinations of objectives.
In case of multiple objectives, the overall fittest individuals
are considered (according to the summed fitness dimensions’
scores). Observing Table III, it is surprising that missions
evolved towards fe and fa individually have a high deviation
and low scores while they often reach higher scores when
combined with other objectives (significantly higher for fp+fe
and fp + fe + fa). Other objectives exhibit a less surprising
behavior, reaching high scores when evolution targets them
individually. Among the objectives, fv manages to achieve
near-optimal values in all runs and in all combinations of
objectives. This may point to the fact that this objective tends
to dominate others during multi-objective evolution, although
it is equally likely that its fitness score formulation in eq. (3)
can reward optimal values to a broad range of mission graphs.

It should be noted that the efficiency of the GA was tested
against a baseline which ran 20 evolutionary runs with the
same parameters, but rewarding all individuals with a constant
fitness score (i.e. random selection). The final maximum scores

(a) Single objective evolution for each
of the objective functions.

(b) Evolution towards a linear combi-
nation of all objectives.

Fig. 2. Progression of the best individuals’ fitness scores during evolution,
for the fitness functions in Table III and all fitness functions combined. The
error bars show the standard error.

of individual fitnesses in the baseline was significantly lower
than the respective single-objective optimization runs; while
fv was relatively close, fitness scores in fa and fe were
18 times and 6 times those of the baseline respectively.
Comparing the best individuals for all objectives (summed)
between the baseline and the optimization run targeting it,
similar differences were found, with optimization runs creating
individuals with 2.8 times the fitness scores of the baseline.

Figure 2a shows the optimization behavior of each fitness
dimension when used as a single objective. It is obvious that
fp and fv are quick to optimize, reaching optimal scores in the
first 10 to 20 generations; by comparison, fb reaches optimal
scores much more slowly, with a high standard deviation in
most generations (shown as error bars) indicating an unpre-
dictable optimization behavior. On the other hand, fe and fa
reach lower scores (as evidenced by Table III) and improve
much slower than the other objectives: fa in particular seems
to be the slowest to reach even sub-optimal scores.

Figure 2b shows how the scores in individual fitness dimen-
sions fluctuate in the overall fittest individual when evolution
targets the sum of all five objectives. Comparing Fig. 2b
with Fig. 2a, the differences are surprising. While fv and
fp unsurprisingly reach optimal scores quickly and remain
high throughout evolution, fb also increases quickly (reaching
far higher scores than when evolving individually) and then
drops, stabilizing at lower final scores than in Fig. 2a. The
optimization behavior of fs and fe is similarly affected: while
they reach similar final scores as in Fig. 2a, fa optimizes faster
when combined with other objectives and fe optimizes far
slower. This is likely due to the way that fe is computed:



TABLE IV
MEAN AND STANDARD DEVIATION OF THE DUNGEON METRICS FOR A SAMPLE OF THE FITNESS FUNCTIONS.

Fitness Graph Size Shortest Path Branching Factor Fights Ratio Puzzles Ratio Rewards Ratio
fp 9.25 (0.43) 9.00 (0.00) 1.85 (0.12) 0.14 (0.13) 0.39 (0.18) 0.47 (0.19)
fe 8.60 (2.67) 2.75 (0.43) 2.75 (0.21) 0.20 (0.17) 0.45 (0.19) 0.35 (0.24)
fv 4.10 (0.30) 2.90 (0.70) 1.99 (0.30) 0.23 (0.25) 0.38 (0.20) 0.39 (0.20)
fa 12.15 (4.40) 6.55 (3.47) 2.24 (0.40) 0.05 (0.07) 0.21 (0.10) 0.69 (0.21)
fb 5.90 (1.81) 3.10 (0.94) 2.38 (0.36) 0.09 (0.13) 0.32 (0.18) 0.59 (0.13)
fp+fe 22.35 (1.88) 6.36 (0.65) 2.68 (0.15) 0.14 (0.06) 0.50 (0.09) 0.36 (0.12)
fv+fe 8.75 (3.86) 2.55 (0.50) 2.87 (0.23) 0.21 (0.15) 0.37 (0.13) 0.42 (0.19)
fv+fa 12.76 (3.11) 6.03 (3.05) 2.35 (0.16) 0.19 (0.08) 0.35 (0.08) 0.45 (0.10)
fp+fe+fv 17.85 (2.35) 6.15 (0.85) 2.57 (0.13) 0.21 (0.05) 0.40 (0.04) 0.39 (0.06)
fp+fe+fa 22.75 (1.61) 6.55 (0.74) 2.58 (0.11) 0.10 (0.06) 0.35 (0.10) 0.55 (0.10)
All 19.00 (0.45) 6.35 (0.08) 2.56 (0.02) 0.18 (0.02) 0.39 (0.00) 0.43 (0.02)

(a) fp (b) fv (c) fb

(d) fa (e) fe

Fig. 3. Mission graphs of the fittest individuals evolved on single objectives.

since it depends on ds,e for its normalization procedure, when
ds,e is quickly optimized due to the fp dimension then the
number of nodes which must be added before fe reaches even
sub-optimal score increases — requiring more mutations and
thus more generations.

B. Quality of Final Mission Graphs

While observing the progress of optimization in Section
IV-A from a purely quantitative perspective provides insights
on the fitness design, it is perhaps more worthwhile to observe
the final mission graphs from the perspective of their potential
in-game use. Towards that effect, this section evaluates the
fittest final mission graphs (according to different objective
functions) in terms of their size, shortest path length, branching
factor and composition. Such metrics, which are shared by all
mission graphs regardless of the objective function used to
evolve or evaluate them, allow for a better comparison between
the patterns favored by the different objectives.

Table IV contains the metrics’ scores of the fittest individ-
uals evolved towards different objectives; the level heuristics
chosen evaluate the structure of the graph (e.g. its size and
branching factor) and the composition of its nodes (i.e. how
many of them belong to the reward, fight, or puzzle category).
We observe that the ratio of puzzles, fights and rewards tends
to fluctuate significantly (based on the standard deviation)
between individuals, even when they are optimized towards the

(a) fp + fe (b) fe + fv

(c) fv + fa (d) fp + fe + fa

(e) fp + fe + fv (f) All

Fig. 4. Mission graphs of the fittest individuals evolved on multiple objectives.

same objective. This should not be surprising considering the
fact that when adding new nodes or changing existing ones,
the node type is picked randomly. Moreover, the objectives
fp and fe do not differentiate between node types. In graphs
evolved towards fp or fe or their combination, the number of
puzzle and reward nodes is roughly equal, with fight nodes
being roughy half the number of each other node category.
In the case of fv , the fitness of eq. (3) rewards changes in
type between adjacent nodes, although this does not seem to
affect the number of fight nodes in a significant way; therefore,
variation likely alternates between reward and puzzle nodes
rather than adding more fight nodes. Finally, since fa and fb
specifically focus on reward nodes when evaluating their safety
or balance, they create mission graphs with far more rewards
than any other type. However, when combining fv with fa or



fb (e.g. for fv + fa or all objectives), the number of rewards
stays close to that of puzzles due to the variation requirement.

Regarding the topology of the missions, from Table IV it
is obvious that fe and fa create larger mission graphs (graph
size) although that does not ensure that the end node is far
from the start node. Meanwhile, the fittest mission graphs for
fp always have a shortest path between start and end node
equal to 9 in all runs; this is not surprising as this fitness
directly rewards mission graphs with 5 to 10 nodes and the
highest value of eq. (1) is when ds,e is around 9. Additionally,
optimal graphs for fp have only slightly larger graph size than
shortest path length: all nodes of the mission graph are on
the shortest path as evidenced by the low branching factor.
Missions evolved towards fe have the highest branching factor
as fe directly rewards a much larger flood filled area around
the start node than the shortest path length to the end node.
Mission graphs for fv and fb can reach optimal values without
reaching a large graph size; this explains why in Fig. 2a these
fitness dimensions are optimized so quickly as a few mutations
which add nodes to the mission can yield optimal scores.
However, these same fitness dimensions when combined with
others (fa, fp or fe) can create large graphs which still have
high scores in that dimension (e.g. in fp + fe + fv). Finally,
combining all fitness dimensions seems to create levels with
the best traits of each objective: large graphs, with long paths
from start to end node (although not as long as when fp
is optimized alone) and a high branching factor. It should
be noted that when optimizing both fe and fp (e.g. when
combining all fitness dimensions), the graph size is larger than
when fe is optimized by itself since fp rewards longer paths,
pushing fe to add more nodes to the mission graph in order
to increase the covered area between start and end node up to
triple the length of the shortest path.

Figures 3 and 4 show the fittest mission graphs for each
of the objectives when optimized alone or in combination,
respectively. These graphs support the conclusions from Table
IV: the graph for fp has no side-passages outside the single
path to the end node, the graph for fe is large but only one
node separates start and end node, the graph for fv and fa
are very small while the graph for fa mostly contains reward
nodes. It is worthwhile to investigate why fv and fa are
optimal despite their small size: the graph for fv has only
two non-neutral nodes, which are different and thus assign an
optimal fv score according to eq. (3). Indeed, having more
than three non-neutral nodes (granted that there are three such
categories) would be more difficult to optimize due to random
node assignment, causing fv to actively favor smaller graphs.
On the other hand, the graph for fb has two rewards placed
symmetrically to all other nodes: due to the reward nodes’
connections, all nodes are actually unsafe (i.e. equally close)
to both rewards and thus the mission graph is “balanced” in
terms of safe areas around rewards, with the caveat that there
are no such safe areas for either reward.

Observing Figure 4, we observe that all graphs are much
larger and complex when optimizing multiple objectives. The
paths from start to end node also seem more ‘interesting’ from

(a) fp (b) fe

(c) fv (d) fa

(e) fb (f) All

Fig. 5. Graph size versus average branching factor of all final populations
evolved for different objectives.

the perspective of progression between node types (fe + fv is
an exception, as the hero can reach the exit node by crossing
one fight node). Of particular note is the graph for fa + fv ,
where the path to the end node (which lacks many side-
passages) consists of shifts between reward nodes and fight
or puzzle nodes, shaping a gameplay that oscillates between
tension and relaxation. When all objectives are optimized
in Fig. 4f, an interesting pattern emerges: there is extensive
branching in the first steps between start and end node, so if
the hero takes the right choice at the start then they can reach
the exit quickly and without much decision-making later (no
branching paths near the end node) or much challenge (one
fight along that path). However, if the hero takes the wrong
initial decision they can get lost in mazelike side-passages
which can make them go in circles back to the start node.

C. Expressivity Analysis

While observing the fittest mission graphs in Section IV-B
provides vital insight into the patterns favored by these objec-
tives, only the one fittest individual per run is assessed. On
the other hand, the expressive range [16] of the generator can
assess the variety of possible results when optimizing different
objectives. The two dimensions explored in this paper are the
graph size and branching factor: both of these metrics are not
directly targeted by the objectives, as suggested by [16], and
are indicative of the actions the hero has to make and the
decisions they have to take respectively.

Figure 5 shows heatmaps of the branching factor and graph
size values of the final populations of all runs, i.e. a total of
2000 individuals per objective. We observe that the fp, fv and
fb have the most consistent results, with little spread and most
individuals centered in specific areas of this expressivity space.



The vast majority of graphs evolved for fp have a branching
factor of less than 2 and a size of 9 nodes, although when the
branching factor increases the graph size also increases (since
the shortest path is likely still 9 nodes, the extra branching
paths add to the graph size). Most graphs evolved for fv are
very small (4 or 5 nodes) and no mission graphs have more
than 6 nodes; a similar expressivity is exhibited by fb although
the branching factor is higher. In contrast, graphs evolved for
fe or fa exhibit more expressivity, being able to create very
small mission graphs (e.g. with only start and end nodes in the
case of fa as shown by the bottom-left corner of its heatmap)
but tending towards larger mission graphs. Graphs evolved
towards fe tend towards more branching paths than those
evolved via fa, which tend towards larger graphs. Finally,
when combining all objectives, the expressivity of the results
is interesting as it is not similar to that of any individual fitness
dimension. Evolved graphs of Fig. 5f are larger with average
branching factors, and the values are less dispersed on either
metrics than for most of the dimensions. This points to an
interesting consensus reached by the — sometimes conflicting
— fitness dimensions being optimized.

D. Example Level

Since the player will experience the evolved mission graphs
as a spatial layout of the dungeon of Dwarf Quest, it is
worthwhile to investigate how such a level architecture would
be. The evolved mission graphs are post-processed and then
refined via the mixed-initiative grammar-based system of [13],
which creates a larger and more detailed mission graph. This
refined mission graph is converted into Dwarf Quest levels by
the layout solver described in [12].

Figure 6 illustrates level architectures for Dwarf Quest
based on the evolved mission graphs of Figures 3 and 4. The
actual rooms which contain nodes in the mission graph are
shown in circles of different colors. The level in Fig. 6a is
created from the mission graph of Fig. 4f, which was evolved
to maximize all objectives. It is immediately obvious that most
rooms in the final level layout are empty and in many cases
form long corridors to connect the nodes. This is due to the
high branching factor of the graph in Fig. 4f, which forces
the layout solver to connect areas far away spatially to their
adjacent nodes in the mission graph. In contrast, the central
part of the dungeon has fewer empty rooms, with only a couple
of rooms between each pair of mission graph nodes.

It should be noted that simpler mission graphs with less
branching, such as the graph evolved for fp in Fig. 3a, result
in far fewer empty rooms as the level is essentially a single
path from start node to end node (see Fig. 6b). Similarly the
small yet branching mission evolved for fb in Fig. 3c creates
a similarly simple level (see Fig. 6c) which contains several
empty rooms without being exaggerated. The layout solver
used for these conversions seems less suited for creating levels
with high branching factors or complex topologies, which
is also evidenced by the need for the post-processing steps
described in Section III-D. By adjusting the layout solver to

(a) Level layout for all objectives

(b) Level layout for fp (c) Level layout for fb

Fig. 6. Level layouts created from missions of Fig. 4f, 3a and 3c. Rooms
included in the mission graph are highlighted as circles of different colors.
Red, yellow, and blue circles indicate fights, rewards, and puzzles respectively.
Gray circles are the start node (left-most) and end node (right-most). In the
above illustrations, bright rooms were necessary to place this mission into
space, while dark rooms were added as part of the variation process.

place graph nodes closer to one another, many of the issues
of extraneous rooms could be avoided.

V. DISCUSSION

The results in this paper highlighted the strengths and
weaknesses of search-based mission generation, as well as
the patterns favored by different objectives of Section III-C.
Overall, evolving towards a single objective tends to result
in one-dimensional graphs which e.g. have no branching (and
thus require no decision-making from the player) or have very
trivial level traversals with a couple of non-neutral nodes.
Meanwhile, aggregating the scores of multiple fitnesses into a
simple sum results in more interesting mission graphs with
emergent features such as a larger size or pacing between
challenge and relaxation. Observing the way each fitness
dimension is optimized when aggregating all objectives hints
at the fact that some of the objectives are conflicting and thus
a multi-objective optimization approach [17] would probably
enhance the quality of the results. However, even with the
admittedly naive aggregated approach the outcomes are use-
ful: optimizing all objectives simultaneously creates the most
interesting missions with long paths to the end, multiple side-
passages and a variety of fight, reward and puzzle nodes.



When assessing the quality of the fittest individuals with
respect to their topology and variety of nodes, it is obvious
that there are far fewer fight nodes than other types. From
a designer’s perspective, fights are the most challenging and
interesting encounters to be had in the dungeon as they involve
the most varied game mechanics (including expending rewards
found in the dungeon, such as battle cards). The lack of
fight nodes was an artifact of the random node type selection
in the different mutation operators: the two types of fight
nodes were less often picked than the 4 or 5 node types in
the other categories, especially since the boss node could be
picked once per level. This could be countered by biasing
the choice of fight nodes with a higher probability. More
interestingly, designing objectives on the ‘quality’ of the fight
node progression could also enhance the importance of fights
in the generated missions. To a degree, the variation (fv)
objective achieves that effect, and mission graphs that optimize
it (such as in Fig. 4c) alternate between fight or puzzle nodes
and reward nodes. However, putting explicit emphasis on fight
nodes and e.g. the placement of the boss node towards the end
of the mission could improve the current results.

As noted in Section IV-D, the level layouts created from
the mission graphs often contain too many empty rooms.
The mission generator for the most part creates graphs that
adhere to the rules of the level generator, especially after post-
processing. Post-processing steps may seem overbearing, such
as omitting nodes with one edge: these steps are less destruc-
tive than it seems, however, since the mutation operators rarely
result in single-edge nodes (none of the examples in Fig. 3
and 4 have non-neutral nodes with one edge). Nonetheless,
the resulting spatial structure may be less suited for gameplay
than the mission graph suggests. Apart from changes to the
level layout solver in order to better handle the branching
mission graphs created by some objectives, this limitation can
be addressed by evaluating the final level instead of — or in
conjunction to — the mission graph. An interesting approach
could be to evaluate how much empty space (i.e. non-node
rooms) are in the final level layouts of a certain mission graph,
applying a penalty to its fitness (calculated as per Section
III-C) proportionate to the amount of empty rooms.

VI. CONCLUSION

This paper described an approach for generating game
levels by evolving their indirect representation (a player’s
action sequence) rather than their direct representation (room
layout). Mission graphs representing the possible paths of
the player for reaching the goal (end node) were evolved
towards different objectives inspired by general game design
patterns such as exploration, balance and safety of resources
[14]. Experiments in evolving mission graphs towards different
objectives individually and in conjunction showed that while
different objectives favor different patterns, combining multi-
ple objectives (or even all objectives) results in more complex
and more interesting mission graph structures. These more
complex graph structures similarly result in quite complex
level layouts, which may increase player fatigue when navigat-

ing them. How to address such limitations, and evaluate both
the graph structure and the final level layout (i.e. the direct
and indirect representation of a game level) is a promising
direction for future research.
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