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ABSTRACT
Evolutionary search via the quality-diversity (QD) paradigm can dis-
cover highly performing solutions in different behavioural niches,
showing considerable potential in complex real-world scenarios
such as evolutionary robotics. Yet most QD methods only tackle
static tasks that are fixed over time, which is rarely the case in
the real world. Unlike noisy environments, where the fitness of
an individual changes slightly at every evaluation, dynamic envi-
ronments simulate tasks where external factors at unknown and
irregular intervals alter the performance of the individual with a
severity that is unknown a priori. Literature on optimisation in
dynamic environments is extensive, yet such environments have
not been explored in the context of QD search. This paper intro-
duces a novel and generalisable Dynamic QD methodology that
aims to keep the archive of past solutions updated in the case of
environment changes. Our Dynamic QD intervention is applied
on MAP-Elites and CMA-ME, two powerful QD algorithms, and
we test their performance on a dynamic variant of the well-known
lunar lander environment.
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1 INTRODUCTION
Solving an optimisation problem consists in finding the best per-
forming solution(s) in the domain of interest. While many problems
are fixed, many others change in different ways over time. These
Dynamic Optimisation Problems (DOPs) [14] are of high interest
to the research community, as they mirror real-world problems
where time affects performance of solutions [4], constraints [5],
or even the bounds of the solution space available to the solving
algorithm [1]. Evolutionary Dynamic Optimisation (EDO) is a sub-
field of dynamic optimisation that leverages techniques inspired
by biological evolution [15] to solve DOPs. Changes in the envi-
ronment can be (a)periodic, occur at a non-fixed rate, and impact
with a different severity. Different methods have been introduced
to detect such changes, such as re-evaluating certain solutions [14].
Diversity in the population is either enforced during the search
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[16] or introduced when an environment change has been detected
[18].

As EDO algorithms rely on definitions of diversity based on
the genotype of solutions, they may fail in environments where
diversity itself is affected by time. Conversely, quality-diversity
(QD) algorithms are a family of evolutionary algorithms that ex-
plicitly takes into account the behaviour of solutions in order to
keep a diverse population [17]. QD has been extensively used to
illuminate the behavioural space by subdividing it into niches [17].
Each solution in a QD problem has an associated fitness that tells
the algorithm the quality of the solution, and a set of behavioural
characteristics, or BCs, of the solution. A niche of the search space
contains one or more solutions with BCs that fall within a specific
interval. By keeping the best solutions (elites) based on fitness in
niches, the diversity of the population, stored in an archive, is main-
tained over time. However, the fitness and BCmeasures of solutions
are not always reliable: in real-world problems, their estimations
can be stochastic [13] or noisy [6]. Prior work on QD applied to
noisy domains [6] and with changing archives [7] showed promis-
ing results. Therefore, we believe QD algorithms provide a solid
foundation to solve DOPs, with some critical adaptations.

In this paper, we propose a framework to adapt existing QD algo-
rithms to solve DOPs, improving their performance over their static
counterpart. Our Dynamic Quality-Diversity (D-QD) approach, ex-
plained in Section 2, can search in environments that change at
an unknown frequency and with unknown severity, on either the
fitness landscape or the behavioural mapping. In particular, we
modify two well-established QD algorithms: the Multi-dimensional
Archive of Phenotypic Elites (MAP-Elites), first introduced in [12],
and CMA-ME [8], an adaptation of the Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) [10] to MAP-Elites. Both algo-
rithms work on a 2-dimensional archive of solutions (a feature map),
where new solutions are added to the archive only when either the
niche they belong to is unoccupied, or is occupied by a solution
with a lower fitness. However, these algorithms differ in the way
new solutions are generated. In MAP-Elites, parent solutions are
randomly sampled from occupied cells in the archive, and offspring
are generated by applying genetic operators. In CMA-ME, instead,
offspring are generated from a mean vector and covariance matrix,
following the CMA-ES approach.

The code for this paper is available at https://github.com/gallorob/
dynamic-quality-diversity.

2 DYNAMIC QUALITY-DIVERSITY
Dynamic QD (D-QD) algorithms are extensions of QD algorithms
that explicitly take into account the dynamic nature of the environ-
ment they operate in. In this work, two well-known QD algorithms,
namely MAP-Elites and CMA-ME, have been modified to work in
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Algorithm 1 Dynamic QD Search
Require: environment 𝑒𝑛𝑣 , detection strategy 𝑑 , re-evaluation

strategy 𝑟 , algorithm 𝑎, total timesteps 𝑇end
1: 𝐴 = ∅ ⊲ Initialise the archive
2: while 𝑡 < 𝑇end do
3: 𝑜 ← 𝑎(𝐴) ⊲ Generate offspring, or new solutions if 𝐴 = ∅
4: 𝑠𝑑 ← 𝑑 (𝐴) ⊲ Sample solutions 𝑠𝑑 for detection
5: if outdated(𝑠𝑑 , 𝑒𝑛𝑣 (𝑠𝑑 )) then ⊲ Detect environment shifts
6: 𝑠𝑟 ← 𝑟 (𝐴) ⊲ Sample solutions 𝑠𝑟 for re-evaluation
7: 𝐴← 𝐴 ∪ 𝑒𝑛𝑣 (𝑠𝑟 ) ⊲ Update archive with re-evaluated

solutions
8: end if
9: 𝐴← 𝐴 ∪ 𝑒𝑛𝑣 (𝑜) ⊲ Attempt adding offspring to archive
10: 𝑒𝑛𝑣 ← next(𝑒𝑛𝑣, 𝑡) ⊲ Update the environment to the next

timestep
11: end while
12: return 𝐴

such a setting. The Dynamic MAP-Elites (D-MAP-Elites) and Dy-
namic CMA-ME (D-CMA-ME) algorithms do this by implementing
two core components: (a) an environment shift detection; and (b) re-
evaluation of solutions in the archive. We include the pseudocode
for our D-QD algorithm in Algorithm 1.

As the environment may change at any time, the environment
shift detection component is vital as it triggers re-evaluation of
past solutions. Detection happens only from the perspective of the
current archive: if a solution’s objective score or BCs differ from the
previously recorded value (stored in the archive), we assume that
therewas an environment shift.We do not allow anymargin of error
in the comparison; we detect a shift regardless of the magnitude
of the change. We thus assume our environments are not noisy:
alternatively, the comparison between previous and current values
would need an additional slack hyperparameter before determining
whether a shift has indeed occurred or if the difference was the
result of a noisy evaluation of the solution.

To avoid re-evaluating the entire archive, we explore two meth-
ods for detecting environment shifts. The first method is based on
“oldest solutions” (𝑑𝑂 ), which selects individuals based on their age,
assuming older solutions are more likely to be outdated. The sec-
ond method instead selects “replacee” solutions (𝑑𝑅 ). Replacees are
solutions in the archive that would be compared against newly gen-
erated offspring. This is beneficial regardless, as ideally an offspring
with up-to-date scores should not replace an elite with out-dated
scores. In either case, selected solutions are re-evaluated and, if
any of their properties are different from their recorded values, we
assume an environment shift has occurred and perform additional
steps in other D-QD components. In 𝑑𝑅 , additionally, it is possible
that re-evaluated elites have different BCs than initially recorded,
which leads to comparisons against additional occupied cells. In
this case, which we call cascading re-evaluations, the number of
re-evaluations may be different from the number of offspring. Fi-
nally, unlike 𝑑𝑂 , 𝑑𝑅 doesn’t require maintaining a list of recently
evaluated elites as all potential replacees are re-evaluated.

The issue of re-evaluating the archive of solutions is critical
to both the efficiency and the performance of the algorithm. Re-
evaluating all elites upon detecting an environment shift ensures

Figure 1: The complete trajectory of the same lander in the
dynamic Lunar Lander environment, before an environment
shift (yellow) and after (red).

the most up-to-date solutions but is computationally expensive. In
our study, instead, we only re-evaluate replacees (𝑒𝑅 ) when an envi-
ronment shift is detected. This approach ensures that new solutions
replace existing elites whose properties may be outdated. If a shift
is detected, replacees undergo re-evaluation, potentially trigger-
ing further evaluations if they move in the archive. We note that,
when using 𝑑𝑅 , replacees are re-evaluated once (combining shift
detection and archive re-evaluation). If 𝑑𝑂 is used, replacees still
require re-evaluation upon shift detection. While using replacees
for shift detection may be more computationally efficient, it lacks
the control and reliability associated with evaluating oldest elites.

3 EXPERIMENTAL PROTOCOL
We first validated our algorithm on a modified version of the simple
sphere environment [8]. We adapted this environment by moving
the sphere centre (i.e.: the global optimum) over time. This change
affected the objective and BCs of solutions directly, giving us a
perfect benchmark to validate our code implementation. Details of
the environment and results from experiments can be found in [9].

In pursuit of a more challenging environment, we modified the
well-known reinforcement learning physics-based lunar lander en-
vironment, available in the Gymnasium suite [21]. Here, a spaceship
(lander) is tasked to safely land on a target location by controlling
only the thrusters on the sides of the ship. The lander starts at a
random angle and velocity. Each solution is a simple linear policy
model, which we evolve to maximise the episodic fitness, i.e.: the
cumulative reward it scores during the simulation. The BCs of a
solution 𝜃 are also driven by the simulation: 𝐵𝐶1 (𝜃 ) ∈ [−1, 1] is
the 𝑥-coordinate of the lander position; and 𝐵𝐶2 (𝜃 ) ∈ [−3, 0] is the
𝑦-coordinate of the lander velocity. Unlike the sphere environment,
the objective score and BCs for the solutions are not modified; in-
stead, the conditions of the simulation are modified dynamically
and affect the QD components indirectly. We introduce dynamism
in the environment by modifying the wind strength 𝜎𝑤 and turbu-
lence strength 𝜎𝜏 , keeping them clamped within the recommended
values to ensure simulation stability. Fig. 1 demonstrates how a shift
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in wind parameters (𝜎𝑤 ,𝜎𝜏 ) affects the trajectory taken by the same
lander. Every 10 iterations, 𝜎𝑤 and 𝜎𝜏 are updated as described in
Eq. (1) and Eq. (2), respectively.

𝜎𝑤 ← max(min(𝜎𝑤 + 𝑅 ·𝑈 (0, 𝛾𝑤), 20), 0) (1)
𝜎𝜏 ← max(min(𝜎𝜏 + 𝑅 ·𝑈 (0, 𝛾𝜏 ), 2), 0), (2)

where𝑅 is a value sampled from a Rademacher distribution (thus set
to either +1 or −1),𝑈 (0, 𝑥) is a value sampled from the uniform dis-
tribution between 0 and 𝑥 , with 𝛾𝑤 and 𝛾𝜏 being the shift strengths
for each parameter. Based on preliminary experiments, we set the
initial 𝜎𝑤 = 10 and 𝜎𝜏 = 1 before the first environment shift, and
the shift strengths 𝛾𝑤 = 0.15 and 𝛾𝜏 = 0.1. QD experiments in the
dynamic lunar lander environment use an archive size of 50× 50. In
part, the strength of the dynamic lunar lander environment is that
its shifts are indirectly impacting the objective and BCs; at the same
time, this means that there is less controllability compared to the
dynamic sphere environment. To ensure changes in the environ-
ment were not chaotic, we analysed 1000 simulated shifts (following
Equation (1) and Equation (2)), observing changes in QD properties.
Results analysed with Pearson correlation (significance at 𝑝 < 0.05)
showed significant correlations between changes in 𝜎𝑤 and both
objective (𝜌 = 0.8) and 𝐵𝐶1 (𝜌 = −0.9), while changes in 𝜎𝜏 showed
significant correlations with 𝐵𝐶2 (𝜌 = −0.71). This suggests a linear
relationship across all QD components (𝑓 , 𝐵𝐶1, 𝐵𝐶2). Assessing the
locality of changes, we used the mean Cosine Similarity Entropy
[3] on the absolute changes when an environment shift occurs. We
found that changes in either 𝜎𝑤 or 𝜎𝜏 resulted in non-localised
changes in both feature map and fitness landscape, i.e.: changes in
the environment did affect all solutions indiscriminately.

Armedwith a proper environment, we can proceed to test our Dy-
namic QD algorithm against two baselines: “No Updates” {𝑑∅ , 𝑒∅ },
in which we never re-evaluate solutions, and “Update All” {𝑑𝑅, 𝑒∀ },
in which all solutions are re-evaluated whenever an environment
shift is detected via replacees. We are interested in measuring the
trade-off between how many solutions we can keep updated and
how many additional re-evaluations are needed. To do so, it is
necessary to compare the output of the algorithm against a perfect-
information, perfectly up-to-date system, which we dub an ideal
archive. The ideal archive is computed on every iteration, and con-
tains only the surviving elites of the current archive after we re-
evaluate all elites. We can then measure the survival rate (%𝑠 ) as
the ratio of elites that survive in the ideal archive over all elites
in the algorithm’s current archive. As all elites would survive if
up-to-date, we want to maximise this metric (up to 100%). Then, we
compute the Mean Squared Errors (MSEs) of the objective scores,
BCs, and QD score of all surviving elites against their up-to-date
values separately, avoiding aggregation biases. Low MSE values
indicate closer alignment to the correct properties of each solution.
Finally, to examine the computational efficiency of our approach,
inspired by [22], we compute the Mean Evaluation Cost (MEC) and
success rates. MEC measures the number of evaluations needed
to reach a survival rate of 75% after each (known, not detected)
environment shift, and the success rate measures the percentage
of between-shifts intervals in which the survival rate threshold
is reached. Ideally, an algorithm would have low MEC and high
success rates, ensuring most solutions remain current in an efficient
manner.

4 RESULTS
We report results of our experiments in Table 1. We test environ-
ment shifts detection with either oldest elites (𝑑𝑂 ) or replacees (𝑑𝑅 ),
while re-evaluating only via replacees (𝑒𝑅 ). Preliminary results
reported in [9] indicated no clear advantage for other strategies.
Results are averaged over 5 independent runs of each algorithm,
using default hyperparameters provided by PyRibs [20]. We report
the 95% confidence interval of these runs in Table 1. Finally, we also
compare each variant against both baselines and the other variant
via a Welch’s T-Test, with significance established at 𝑝 < 0.05.

From the presented results, we find that only the {𝑑𝑂 , 𝑒𝑅} strat-
egy applied to D-CMA-ME consistently outperforms the “No Up-
dates” baseline, as well as outperforming the alternative {𝑑𝑅, 𝑒𝑅}
variant. More specifically, {𝑑𝑂 , 𝑒𝑅} greatly improves the survival
rate in both algorithms, increasing it by 15% in D-MAP-Elites and
by 34% in D-CMA-ME compared to {𝑑𝑅, 𝑒𝑅}. For mean MSE val-
ues, we find that {𝑑𝑂 , 𝑒𝑅} maintains more correct values for the
surviving elites than {𝑑𝑅, 𝑒𝑅}. While this difference is significant
in D-CMA-ME, it also holds in D-Map-Elites without being statisti-
cally significant. Regarding computational efficiency, no variants
are able to match the success rates of the “Update All” baseline.
However, {𝑑𝑂 , 𝑒𝑅} variants reach double and nearly 10 times the
successes of {𝑑𝑅, 𝑒𝑅} variants for D-MAP-Elites and D-CMA-ME re-
spectively, at less than twice the evaluation cost. From this analysis
we can conclude that using D-QD can keep solutions up-to-date at
a fraction of the computational effort of re-evaluating all solutions
whenever an environment shift is detected. Detecting environment
shifts via oldest elites may be slightly more computationally heavy,
but keeps the archive more up-to-date.

We note that our analysis does not compare performance be-
tween D-MAP-Elites and D-CMA-ME. The main reason for this is
that D-MAP-Elites worked on a fraction of the computational bud-
get of D-CMA-ME, producing fewer offspring per generation. This
allowed us to compare the dynamic variants within each algorithm
as they would be implemented in their most standardised form.

Alongside theD-QD algorithms, we also presented a procedure to
convert static domains into dynamic ones, as well as the necessary
tools to analyse the resulting environments. This facilitates future
research, as our findings are limited to the single environment
we tested our D-QD algorithm on. Another limitation is that our
framework does not handle noisy domains, which would impact
its performance. Future work could explore memory strategies
[19] to reintroduce older solutions and handle noisy environments
effectively. Finally, the current paper uses performance metrics
based on an ideal, up-to-date archive, while such tools are not
available in real-world applications.

Despite these limitations, this project sets the foundation for
more ambitious work where changes in the environment reflect
real-world issues, such as machine deterioration [2] in evolutionary
robotics and changes in user preferences in AI-assisted design tools
[11]. Future work could focus on equipping algorithms with the
ability to handle shifting designer goals and preferences implicitly,
paving the way for more dynamic and adaptive systems.
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Table 1: Performance metrics for D-MAP-Elites and D-CMA-ME on the dynamic Lunar Lander environment across 5 different
runs. Metrics are the Survival rate (%𝑠 ), error for the objective (𝑀𝑆𝐸𝑜𝑏 𝑗 ), BCs (𝑀𝑆𝐸𝐵𝐶1 and 𝑀𝑆𝐸𝐵𝐶2 ), and QD-score (𝑀𝑆𝐸𝑄𝐷 ),
averaged over all iterations, with 95% Confidence Interval, and MEC with survival threshold set to 75% along with ratio of
successes over all actual environment shifts in parentheses. The D-QD variants {𝑑𝑅 , 𝑒𝑅} and {𝑑𝑂 , 𝑒𝑅}, are tested against two
baselines: “No Updates” as {𝑑∅ , 𝑒∅} and “Update all” as {𝑑𝑅 , 𝑒∀}. Significantly better results between a variant and the “No
Updates” baseline are shown with a †, between a variant and the “Update All” baseline are shown with a ‡, and between the two
variants are shown with a ★.

Algorithm Strategy %𝑠 ↑ 𝑀𝑆𝐸𝑜𝑏 𝑗 ↓ 𝑀𝑆𝐸𝐵𝐶1 ↓ 𝑀𝑆𝐸𝐵𝐶2 ↓ 𝑀𝑆𝐸𝑄𝐷 ↓ MEC75% ↓ (↑)

D-MAP-Elites

𝑑∅ , 𝑒∅ 59±7 310±97 0.13±0.04 0.60±0.04 13728±5224 50±0.0 (22%±0.08%)
𝑑𝑅 , 𝑒∀ 99±0.2 25±9.2 0.003±0.001 0.07±0.02 98±35 522±18.3 (99±0.0%)
𝑑𝑅 , 𝑒𝑅 63±6 274±78 0.09±0.02 0.61±0.04 10508±3862 80±0.8‡ (22±0.1%)
𝑑𝑂 , 𝑒𝑅 74±4† 228±69 0.05±0.01† 0.54±0.04 5107±2519 142±1.6‡ (47±0.17%†,★)

D-CMA-ME

𝑑∅ , 𝑒∅ 44±8 203±44 0.20±0.06 0.70±0.06 34120±21689 400±0.0 (10±0.02%)
𝑑𝑅 , 𝑒∀ 100±0.0 0.08±0.04 0.0±0.0 0.0±0.0 0.8±1.1 1584±32.7 (99±0.0%)
𝑑𝑅 , 𝑒𝑅 49±5 182±18.5 0.09±0.02† 0.66±0.03 27775±12487 701±10.3‡ (9±0.14%)
𝑑𝑂 , 𝑒𝑅 78±1†,★ 83±7†,★ 0.02±0.004†,★ 0.42±0.02†,★ 1401±216†,★ 1062±9.1 (88±0.02%†,★)

5 CONCLUSION
This paper introduced a novel approach to dynamic optimisation
which leverages QD search, and applied it to MAP-Elites and CMA-
ME algorithms. The proposed D-QD methodology was tested on
the well-known lunar lander environment, which was adapted to
be dynamic over time. The multiple experiments with different
setups and baselines revealed a clear-cut optimal D-QD variant for
the D-CMA-ME algorithm, relying on oldest elites for detecting
shifts in the environment. However, the efficiency of D-QD search
on different performance metrics highlights the trade-off between
accuracy and computation costs. We expect that this work will
inspire research on the optimisation of dynamic environments
under the powerful lens of quality-diversity search.
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