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Abstract—Procedural Content Generation (PCG) systems
typically struggle to generate cohesive content across multiple
domains. Large Language Models (LLMs) understand semantic
relationships of game elements, at least when they are described in
natural language. This paper investigates how LLMs and text-to-
image models can generate narrative, visual, and gameplay content
coherently. We leverage LLLMs as a scaffold for an automated,
theme-driven asset generation pipeline, enabling unique and
scalable game experiences with no developer input besides setting
up a game template. This paper introduces CrawLLM, a dungeon
crawler with card combat mechanics, as a testbed for an LLM-
driven game generation pipeline. A Mixtral 8x7B model generates
game themes, guiding the creation of narrative content. Visual
assets are produced via Stable Diffusion XL, using ControlNet
and IP-Adapter modules to achieve game-ready formats. A user
study conducted on snapshots of fully generated games indicates
that the underlying semantic themes remain clearly discernible
in many cases, although intended visual styles were less clear.
This work demonstrates the potential of LLLM-driven pipelines
for PCG, while highlighting areas for improvement in content
specificity.

Index Terms—Procedural Content Generation, Image Gener-
ation, Narrative Generation, Large Language Models, Stable
Diffusion, Automated Game Generation

I. INTRODUCTION

Crafting content for digital games is a labour intensive
process for several reasons. First, digital games are multifaceted
and rely on narrative, visuals, audio, rules, levels, and more [1];
each of these facets requires its own skillset and mindset [2] to
produce assets for. Secondly, such content requires technical
processing, to format and optimise it in order to be usable by
the game engine. Lastly, all of these assets must form a coherent
ensemble that shapes and enhances the player experience [1].
Procedural content generation (PCG) for individual facets, such
as levels, visuals or music, has been extensively explored [3[]—
[7]. However, it is very challenging to cross-evaluate artefacts
from different facets; cross-modal [8]] generation in games is
under-researched [/1]. Finally, human players have different
aesthetics: no one set of game assets will be liked by all. PCG
may provide a wider variety of content themes, or possibly
personalised assets to match player preferences.

The advent of Large Language Models (LLMs) and their
recent leap in performance and popularity makes them ap-
pealing for PCG. Their inherent instruction-following ability
and high-level understanding of game elements and their
functional interconnections position them as capable generators
in several aspects of game development [9]. Their semantic
input and output make them very accessible with little technical
knowledge needed. However, using LLMs introduces some
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constraints in automated systems: for one, their outputs
need to be parsed through consistent naming and formatting
conventions by follow-up PCG components in a generative
pipeline [1f]. Similarly to LLMs, diffusion-based text-to-image
generators—such as the Stable Diffusion [[10] (SD) family—are
able to generate images in a wide range of styles and high
aesthetic quality. In conjunction with other models designed
to condition SD output [11], [12f], text-to-image generators
are well-suited to generate visual assets for direct deployment
within a game engine.

Inspired by recent advances in LLMs and text-to-image
models, this paper introduces an LLM-driven pipeline capable
of generating both textual and visual assets that are coherent
with a theme—itself generated by the LLM. The pipeline
produces narrative elements, characters, and locations, along
with descriptions that drive text-to-image sub-processes for
corresponding visuals. As a proof-of-concept, we developed a
2D dungeon crawler, CrawLLM, in which combat unfolds
through card-based actions, demonstrating the generator’s
ability to support diverse visual design tasks.

This work can be viewed as an initial attempt at applying
generative Al for automated ‘cloning’ or ‘re-skinning’ of games
[[13]]. Game clones (e.g. Diablo-clones) follow the original game
fairly closely (mostly changing audiovisual assets), and are
often considered “opportunistic and monetarily motivated” [[14]]
when made by human creators. At the same time, the ambition
of CrawLLM extends beyond cloning: by combining narrative
generation with visual synthesis, the pipeline points toward
a more general framework for holistic game generation [/1].
Central to both cloning and game generation is the system’s
ability to maintain thematic coherence across narrative and
visual elements. We evaluated this through a user study with
34 participants assessing the coherence of generated games to
their overarching themes.

This paper contributes to PCG research in several ways:

1) It introduces CrawLLM, a novel dungeon crawler with
card combat mechanics, which incorporates narrative
elements, cards, character animations, and 2D tilesets.

2) It describes the CrawLLM generative pipeline, which
generates new thematic elements to guide the generation
of game-ready text and visual assets (see Fig. [T). This
approach employs a fixed game template.

3) Asset generation is controlled by natural-language themes
(Section [[TI-B), enabling designers with minimal technical
expertise to direct content, while developers can refine the
underlying template. This yields controllable generation
of games with consistent themes and loops.

4) It advances controllability and coherence in generative Al
via ControlNet-guided visual refinement and a hierarchical
multi-stage pipeline. Though demonstrated in CrawLLM,
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Fig. 1: The full CrawLLM pipeline, illustrating the predefined elements in the template created specifically for the game. The
LLM generates both text assets for the game as well as prompts for image generation.

these methods generalise to diverse types of assets,
including tilesets, animations, and narrative.

5) It proposes a new evaluation protocol in which participants
infer the intended theme (against semantically related
alternatives) based on generated game assets as integrated
in the game.

II. RELATED WORK

Since the focus of this paper is on leveraging recent advances
in generative Al for procedural content generation, we review
work on the above topics and their intersection.

A. Procedural Content Generation and Game Generation

PCG has traditionally targetted specific facets of games,
such as levels [15]]; while less popular, PCG for other facets
such as game visuals [S[], game audio [6]], game narrative [16],
and game rules [7] has also matured. However, combining
generators of different facets is challenging [1]: establishing
coherence between content of different modalities is non-trivial,
and heuristics for such cross-modal evaluations have been
historically sparse. A common way to address the generation
of games is to either generate everything in one go, e.g. evolving
both the game rules and the game board in Ludi [7]], or to
generate everything sequentially: the previous generative step
constrains the possibility space of the next generative step. The
latter is called a generative pipeline or a top-down orchestration
process [[1]. The generation of complete games has often been
possible due to such a pipeline, e.g. starting from a human-
provided concept—as simple as the protagonist’s name [[17]],
[18] or as complex as a concept relationship graph [19]—and
generating individual game components one at a time. Other
systems have used declarative logic programming to generate
games that are guaranteed to be consistent with a desired
interpretation [20]. In other cases, game generation occurred

by generating different facets independently and tying them to
a high concept, or leaving some aspect of the process (such as
level generation) independent from the game concept [21].

As noted in Section [} the term game generation in PCG
academia [15]], [22]] has often been associated with the auto-
mated discovery of new game mechanics—e.g. in platformer
games [23], [24]. Early successes in game generation such as
the abstract two-player board games generated by Ludi [7] may
have influenced this association. However, we follow [1]] and
their more holistic view of games as a confluence of visuals,
music, narrative, level- and game-design (e.g. rules) rather than
only the latter. We argue that game generation software such
as DATA Agent [25] can create unique player experiences by
changing the characters, visuals and locations while keeping a
pre-defined core game loop. CrawLLM takes this approach a
step further, generating the general theme of each game and
then a number of visual and text assets, used as proto-narrative
[1]], in a feed-forward generative pipeline controlled by modern
generative Al methods.

Past game generation research has often focused on variants
of existing games such as chess [26], [27] or game genres such
as platformers [23]], [24]]. Their process is often approached
through automatic mechanic discovery [7], [23], [24], [28].
Few examples instead focus on changing the player experience
through textual and graphical assets, such as in early versions
of the ANGELINA platformer game generator [21]]. Dungeon
crawlers have also been targeted extensively in PCG research
[29], [30] from the perspective of level generation. CrawLLM
adopts the approach of text and visual assets generation and
applies them to a novel dungeon crawler with generated levels,
adding card combat mechanics to assess the pipeline’s ability
to generate a diverse range of assets.



B. Gen Al: Large Language Models and Text-to-Image Models

Recent advances in Generative Al (Gen Al) exhibit potential
in PCG. Cross-modal evaluation is now possible through deep
learning models such as OpenAl’s CLIP [31]] or FLAVA [32],
which are zero-shot classifiers mapping text and images to
the same latent vector space. These models can evaluate
coherence between images and text, but their applications
can do even more. Text-to-image generative algorithms have
seen a leap in quality, especially diffusion models [[10] trained
on large corpora of image sets. Stability AI’s initiative to
release its Stable Diffusion (SD) family of such models led
to widespread use by both the scientific community and
enthusiasts. ControlNet [[11]] was developed soon after, and
offered better control over the generated image beyond the
input text prompt. ControlNet works by replicating parts of
the SD model’s neural network while freezing the original
network’s gradient; this allows the replicated part to adapt
to specific control input images (e.g., edge or depth maps).
This ensures precise control without altering the core model’s
learned features. However, each image is individually generated
and the model retains no awareness of prior inference iterations.
This makes it difficult to produce multiple images of e.g. the
same character or location, as required in a sequential visual
narrative. An IP-Adapter [12] works with SD by conditioning
the model with additional input from an image, helping it retain
key visual elements (e.g style or structure) during inference.

Diffusion models have been used to generate game assets,
such as 2D spritesheets for character animations [33]]. However,
the process involves manual intervention and multiple refine-
ments, with little automated control on the generated poses
themselves. Other work on an automated pipeline for character
generation [34] required training of a pose-control model for
the specific art style and character type, restricting its use in a
more general game generation pipeline.

In this work we utilise the SDXL model [35] from the SD
family, as it offers a wide selection of compatible ControlNet
and IP-Adapter models which may be readily applied to it.
Although larger and more performant text-to-image generation
models are available, these do not all offer compatible condi-
tioning models that are necessary for the proposed pipeline.

While text-to-image models seem able to address both the
challenge of coherence evaluation and the challenge of visual
asset generation, coherence can be ensured in more ways. LLMs
understand relationships between semantic concepts and can
generate text constrained by the instructions provided—also
in text. LLMs are transformer-based auto-regressive models
trained on extremely large corpora of tokenised text to predict
the next token. OpenAI’s ChatGPT family [36] has become
predominant in research, but competing models have been
released openly, such as Meta’s LLAMA [37]] family, and
Mistral’s own models [38]]. These LLMs demonstrate a high
level of understanding not just of language, but also of a broad
range of subjects [39].

C. Gen Al and Procedural Content Generation

Gen Al approaches have already shown potential for use in
games in multiple roles [9]], [40], and have already been used

for PCG in games [41]], [42]. Prior research has explored how
Gen Al models can create game assets [43]]. In some cases, such
as Genie [44], this has extended to generating entire games—
including the underlying engine. Other work has focused on
using LLMs to design levels and rules [42], [45]. StoryAgent
[46] demonstrates a top-down approach: from a single-line
prompt, an LLM constructs a hierarchical story structure
(characters, scenes, timeline), which is then expanded in a
bottom-up phase that generates and assembles assets such as
text, images, and music. Unbounded [47]] generates an ‘infinite’
sandbox life simulator based on a player-defined character
appearance and personality; game mechanics, narratives, and
environments are produced dynamically during play by an
LLM fine-tuned on game data. At each step, new mechanics or
narrative events are generated in response to players’ textual
input. Visual assets are produced through diffusion models, with
consistency managed by IP-Adapters [[12]. These approaches
typically rely on either models trained explicitly for the task
or manually integrating generated assets into the target engine.

LLMaker [48] is similar to our approach in combining
LLMs, Stable Diffusion, and ControlNet to create a (side-
view) dungeon crawler similar to Darkest Dungeon (Red Hook
Studios, 2016). Unlike CrawLLM, however, LLMaker is a
human-in-the-loop authoring tool rather than a fully automated
generator of a playable game. In LLMaker, users guide the
process through natural language, and the LLM translates their
intent into appropriate generative function calls [48]].

This paper is distinct from prior work in key ways. First, it
employs pre-trained models without task-specific fine-tuning,
enabling a zero-shot pipeline. Second, asset generation is fully
automated, allowing direct incorporation of outputs into the
game engine without human intervention. Finally, much of the
literature has favoured large proprietary systems such as GPT-4
[36] for their strong performance; this paper demonstrates that
smaller open-source models can also be effective, and can run
locally on hardware that is more readily accessible.

III. CRAWLLM

CrawLLM is a procedurally generated dungeon crawler
game developed in the Unity game engine.It features a fully
defined game template (see Fig. [I) which specifies the player’s
experience as well as the game’s expected assets and their
format (described in Section and a generative pipeline
for producing all the assets in a top-down, step-by-step fashion
[[L]. Specifically, LLMs produce the high-level descriptions of
the entire game, which then guide and constrain follow-up
generative steps to produce the user-facing text assets and
visual assets.

A. The Game

CrawLLM is a dungeorﬂ crawler with top-down 2D visuals.
The “dungeon” consists of rooms and corridors grouped into
locations; up to 5 locations may exist within the dungeon. The

'We use the term “dungeon” here loosely based on the tropes of the genre,
but apart from labyrinthine and fairly constrained structures, the “dungeon”
in each game of CrawLLM might be anything—not necessarily a castle or
medieval prison.
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Fig. 2: Gameplay elements within a CrawLLM game session.
Labelled elements are door (1), wall (2), floor (3), and secret
door (4) tiles, key (5), PC (6), and enemy (7) sprites, PC
(8), location (9), enemy (12), and action card (15) names,
and location (10), PC (11), card frame (13), and action card
(14) images. The game depicted is “Luminary’s Legacy: The
Renascence Vault”.

dungeon is generated anew on each playthrough (as described
in Section [I-C)) but using text and visual assets generated
beforehand (see Section [[II-B).

When the player starts the game, they receive a short message

introducing their player character (PC), their situation and goal.

At that point, the player moves their PC around the 2D map in
an effort to reach the dungeon’s exit and complete the game. To
achieve this, the player has to pass through different locations
(see Fig. 2a) which consist of corridors and rooms. Rooms can
be separated with a door: doors may either be locked (requiring
one or two keys to open) or they may close behind the PC,
acting as a one-way portal (entering from the other side is
impossible). Keys are found in the dungeon and picked up
by colliding with them; there are no other pickup items. To
increase the navigational challenge, secret doors may appear in
some rooms; once discovered, they turn into regular corridors
connecting two secret doors. Each location may have one

type of enemy and two types of minions (tied to that enemy).

The enemy appears in the final room of that location, while
minions may be found in other rooms of this location. Enemies
or minions roam within a room following simple movement
patterns. If the player collides with a roaming opponent, they

TABLE I: Cards in CrawLLM, with their in-game effect; the
original card title listed is subsequently adapted by the LLM.

[ Original title | Effect [ Cost | Frame |
Basic Attack Deal 6 damage 1 Bronze
Fast Attack Deal 3 damage 0 Bronze
Basic Block Gain 5 block 1 Bronze
Basic Heal Heal 3 HP 1 Bronze
Basic Draw Gain 2 cards 0 Silver
Gain Mana Gain 2 mana 0 Silver
Increase Max Health Increase max HP by 5 2 Gold
Increase Strength Attacks do 4 more damage 2 Gold
Life Steal Deal 5 damage, heal 5 HP 2 Gold

enter a new view to conduct card-based combat.

The Card Combat view (see Fig. 2b) shows the PC and
current enemies as cards (along with their hit points and other
statuses) and the player’s action cards. The enemy may be
accompanied by minions during card combat (see Fig. 2b),
even though those are not visible in the dungeon crawling view.
The number of additional minions depends on the danger level
of the room, which is controlled by the dungeon generator
(see Section [[II-C). Combat is turn-based; the player chooses
action cards up to their maximum man, while enemies take
actions randomly from a pool of actions depending on their
type. Victory in combat gives the player a new action card
among three options. The initial player deck is predefined
for all games, but the awards are randomly chosen from all
possible cards encoded in the system. Cards’ frame colours
(bronze, silver or gold) hint at the power of the card. All cards’
in-game effects and costs are predefined, and are listed in Table
|I|; however, their titles and card art (including the card’s frame)
are generated according to the game’s theme. Indicatively, in
Fig. 2b] the “Basic Attack™ title of the card in Table [| becomes
“Renaissance Riposte” (see 15 in Fig. 2b).

The number of assets that must be generated for a complete
game depend on the number of locations in the dungeon. Since
in this paper the dungeon generator can add up to 5 locations in
the level, the in-game text assets that must be generated include
the names of 1 PC, 5 enemies, 10 minions and 9 action cards
as well as 1 introductory message and 1 completion message.
In terms of visual assets, those include 3 card frames (one per
colour), 16 spritesheets and 16 portraits for card combat (1
PC, 5 enemies, 10 minions), 9 pieces of action card art, 5 card
combat backgrounds, 45 wall tiles (9 per location), 20 floor
tiles (4 per location), 20 key sprites (4 per location), 10 door
tiles and 5 secret door tiles. All of these need to be externally
coherent with the game’s setting but also internally coherent
in the context of their use (e.g. walls matching the floors of
a location). We detail the generation of all these assets in
Section

B. Generative pipeline

The scope of this paper was to implement a pipeline based on
LLMs which can orchestrate [1] the generation of all necessary
text and visual assets for CrawLLM, thereby re-theming it to
different settings. To do this, we first generate overarching
semantic information (see Section [[II-BT) that is not shown
to the user directly but is used as additional prompts both to
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Fig. 3: The sequence of text generation via Mixtral 8x7B.
Arrows indicate the reuse of generated text as part of the
prompts in the following stages. Steps 4, 5, 6 are repeated for
each location in the game (five times in the current paper).

control player-facing text (see Section and visuals (see
Section [[II-B2). Based on extensive testing, this study uses
the Mixtral 8x7B model for all LLM-based text generation;
the model runs locally on our machines through the Ollamzﬂ
platform. The prompts used for both text and image generation
are being made openly available on an online repositoryﬂ

The overall structure of the CrawLLM generative pipeline
is outlined in Figure [I]

1) Generation of semantic information: Thematic details are
represented as text, and are generated first by the LLM in steps
(see Fig. 3). As noted by [49], time and space are central to
narrative design in games. Accordingly, three thematic details
were defined, namely the setting (e.g., “A cursed carnival during
a sandstorm”), the environment (e.g., “Tilted rides, ghost tents,
dunes and ruins”), and the epoch (e.g., “Late 20th century”).
To guide generation of visuals, a fourth thematic detail is
the artistic style (e.g., “Watercolor, whimsical”). These four
thematic details are all generated together by a single prompt,
which outputs a JSON-formatted response.

The thematic details (except visual style) guide the generation
of a number of text assets which are shown to the player—even
if not in full. With appropriate prompt templates which are
instantiated with the setting, environment and epoch details of
this game, the LLM generates the game name, details on the
player’s character (their name, species, gender, and description),
an introductory message shown to the user when the game starts,
and a completion message shown when the player reaches the
dungeon’s exit. We also generate five appropriate locations
(their name and description) which will be used to create
location-appropriate details in next steps. It is worth noting that
while the game name, introductory and completion messages
are shown to the player in full, the PC’s details and location
descriptions are never shown to the player (only the PC’s name

Zhttps://ollama.com/
3https://github.com/m- a-r-v-i-n/CrawLLMPrompts

and location name) but are necessary as prompts for the next
generative steps.

The PC details, coupled with the thematic details (except
visual style) are used in additional prompts for generating the
action cards of the game; the details of each card as described
in Table [I] are also provided in this prompt. The LLM generates
action card names for each of these (replacing the original title
of Table |I) as well as the action’s description, which is not
shown to the player but impacts the generation of its card art
detailed in Section

Each location has one enemy with two minions; those are
generated through separate LLM calls that include details of
this location in the prompt. Along with location details, the
prompt includes the PC details and the thematic details (except
visual style) to generate the main enemy details (its name,
species, gender, and description). Details for two minions (as
above) per enemy are generated through a single LLM call that
includes the main enemy details, the location details, the PC
details and the thematic details (except visual style). As above,
enemies’ and minions’ details are used for the generation of
visuals but are not explicitly shown to the player; only their
names in Card Combat view are shown (see Fig. [2b).

Finally, each location’s semantic details (along with thematic
details bar visual style) are used to generate semantic descrip-
tions for the walls, floors, doors, and keys of this location.
These are not shown to the player but inform the generation
of the dungeon crawler tileset (see Section [[II-B2).

2) Generation of visuals: Unlike the semantics generated in
the previous step (see Section [[II-BT)), all generated visuals are
player-facing. Some are used in the dungeon crawling view (e.g.
tilesets, PC and enemy animations) while some are used in the
card combat view (e.g. action cards and location background).
Due to the complex nature of the asset generation pipelines of
dungeon crawling views, we detail those in dedicated sections
below and present all visual generation processes for card
combat at the end of Section

All visual assets are generated using a community fine-tuned
Stable Diffusion XL (SDXL) model called Artium VZ.(ﬂ
due to its versatility across various art styles. In addition,
there are a number of ControlNet models available for
SDXL which constrain the generated image to either follow the
contours of a predefined line drawing, or follow a predefined
pose for a character. An IP-Adapter is also available
for this model, which retains character consistency from a
provided reference image when generating new images. We
note that SDXL generates fairly high-resolution assets (best
results are with 1024 x 1024 pixels) which is above what a
simple tile-based level layout would require; however, we keep
high-resolution results for all aspects of CrawLLM due to
the improved image quality. Note that all prompts for SDXL
for all visual asset generations include the visual style details
generated via LLMs (see Section [[II-B1)), and we will not
repeat this information in the explanations that follow. All line
drawings and masks mentioned below were designed ad hoc
by the authors and are part of the game template (see Fig. [T).

4https://civitai.com/models/216439/artium
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Fig. 4: The tileset generation process carried out in 3 stages.
Tiles from the game “Aeternum Ruptura’.

a) Tileset Generation: Each location has floors, wall and
door tiles that must be arranged in a 2D grid, acting as a
background for the player to navigate. Generating appropriate
visuals that clearly demarcate traversable areas (floors) from
impassable areas (walls) and interactable tiles (doors and secret
doors) is challenging and thus requires some elaboration.

In initial trials, the floors, walls, and door tiles were generated
separately as individual images. Although the results were
acceptable when observed individually, the floor tiles were
often too intricate or the walls offered little contrast to them,
and demarcation of the traversable areas was unclear. In follow-
up trials, each location’s tileset was instead generated as a single
image with specific parts of the image representing different
tile types, using ControlNet based on a custom-made outline for
this task. However, the SDXL model was unable to correctly
distinguish between regions intended to be walls and those
intended to be floors.

In this version of CrawLLM, each location’s tileset is
generated as a single image in three stages as shown in
Figure ] Initially, we provide a line drawing as a guide for the
central 4 floor tiles to the SDXL via ControlNet, together with
the semantic description for floor tiles (see Section [[TI-BT].
The generated image with the floor tiles is then extended to
the full tileset size, with random noise in unpainted areas.
This noisy tileset image is provided to the model, along with
wall descriptions (semantics), a line drawing as a guide to
ControlNet, and a mask identifying the regions of the walls for
inpainting (see Fig. @). The resulting image of this stage has
almost all tiles (including the secret door, which should look
like a wall) generated except for two tiles which are re-painted
with random noise. These two tiles are populated with two
door variants in the final stage. The updated noisy tileset image
is provided to the model, along with door descriptions (in the
prompt), a line drawing guide for ControlNet and a mask
identifying the two door regions for inpainting, to produce the
final result shown at the far right of Figure [4]

Note that when creating the final visual of the dungeon
(see Fig. [6), each wall tile is chosen at random among the 9
wall textures of the tileset, each floor tile is chosen at random
among the 4 floor textures of the tileset, and each door is
chosen at random between the 2 door textures. This leads to
more visual variety within a location, but may lead to some
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dissonant results when tiles of the same type are very different.

b) Generation of Character and Opponent Animations:
Since the PC, enemies and minions move around in the
Dungeon Crawling view, it is important to create movement
animations along the four cardinal directions. These animations
are done through spritesheets, which consist of four frames
of movement along three directions (front, back, and lefﬂ). A
spritesheet requires high consistency between frames, and a
controlled pose and positioning in each.

To generate each spritesheet, a guide image with predefined
OpenPose poses was produced in Unity: a 3D humanoid
model was captured at different stages throughout an idle
and a jogging animation. Points and lines corresponding to the
various joints and bones (as specified in the OpenPose standard)
were drawn at each key frame of the required animation (see
Fig. B). The resulting images were collated into a single image
as a reference.

While initial trials attempted to use this spritesheet guide
via ControlNet to generate the spritesheet in one go, the
generator often mistook back movement with front movement.
The generation is therefore split into three stages, one for
each pose orientation (see Fig. [B): prompts always include
the character’s details (PC, enemy, or minion) as generated
in Section =BT} In the first stage the guides for the side-
facing poses are provided as a single ControlNet reference.
The resulting image is then extended vertically with random
noise. The front-facing poses are added to the ControlNet
guide image, and an IP-Adapter with the generated side-facing
sprites as reference was added to the SDXL model. A mask
for inpainting the front-facing sprites in the freshly extended
region is also provided to SDXL, and the text prompts direct it
to draw the same character in front-facing poses. The process is
repeated to generate the back-facing poses from the side-facing

SRight movement is a simple reflection of the left animation.



Fig. 6: A sample generated dungeon (left), and the graph
representation which generated it (right). The nested cycle
structure is delineated on the graph. The game depicted is
“Spirits of the Ice: Arctic Research Unbound”.

set, with the respective back-facing guides and prompts. The
three parts are then combined into a single spritesheet.

The final step of the process requires the removal of the
background in the image. The text prompts throughout the
generative process include instructions to draw the images on
a blank background. Rembgﬂ an open-source Python library
for background removal based on a pre-trained neural network,
was used to add transparency to the final image. In rare cases,
some peripheral items in the image were erroneously cropped
out as background.

c) Generation of other Dungeon Crawling assets: The
only assets not covered above are key sprites, which are
generated using the location-based key descriptions (and visual
style) as SDXL prompts, with an additional post-processing
step for background removal via Rembg.

d) Generation of Card Combat assets: Most assets for the
card combat are fairly simple text-to-image prompts, requiring
only the thematic details and the relevant asset details: location
details for the background image, enemy details for the card
art of the enemy, PC details for the card art of the PC, and
action details (name and description) for the card art of the
PC’s action cards. The only complex generative pipeline is
for the card’s frame. Three card frames are generated, colour-
coded to signify the rarity of the card (gold, silver and bronze).
Card frame prompts include all thematic elements (setting,
epoch, environment, and visual style), which is not the case for
any other visual asset. Each card has several strictly delimited
areas for the card art, descriptive or functional information,
and a smaller area for icons showing the intended actions
for opponents’ cards. To generate this card frame, a line
drawing guide was used for all three frames to guide SDXL
via ControlNet.

C. Dungeon Generation

The dungeon layout is procedurally generated at the start of
each playthrough. The layout follows a cyclic structure [51]],

Ohttps://github.com/danielgatis/rembg

inspired by the algorithm introduced in Unexplored (Ludo-
motion, 2017), and results in solvable puzzles involving keys
and locked doors. CrawLLM uses a number of hand-crafted
cycles adapted from [52]]. Nodes can define the goal room
(e.g. where the enemy or locked door is located), whether the
room contains a key, or its danger level (which determines how
many minions are added in card combat). During generation,
a random cycle from the collection kickstarts the process, and
is then expanded by replacing a node in this cycle with a full
cycle (a node of which may again be replaced with a full
cycle and so on). The generative process ends when some
termination conditions are met (to ensure that routing is still
possible on a 2D grid); cycles are then grouped as locations
(see Fig. [f). The maximum number of cycles in a dungeon is
five (thus the need for 5 location names and assorted assets in
Section but can be fewer if graph generation terminates
early, as in Figure [6]

While the cyclic dungeon graph is fairly simple to generate,
placing the nodes and paths onto a 2D grid is non-trivial and
must be done iteratively. In CrawLLM, nodes are translated
into rectangular rooms and edges are represented as (straight
or right-angled) corridors. Placement starts from the innermost
layer of cycles, with one node chosen and placed as a room at
the grid’s origin point. Connected rooms are then placed on a
grid around it, and this process is repeated recursively for all
remaining rooms. Since CrawLLM is designed to be purely
two-dimensional, with no overlapping corridors or rooms, this
process might occasionally be unable to place some corridors
between rooms. However since this graph-routing process is
rapid, it can be restarted until a possible placement is found.
Figure [6] shows how the graph layout is translated into a 2D
grid, with appropriate tiles and visual elements.

D. Game Collection

The above pipeline was applied to generate 20 different
themes and assets for each. All resulting games were playable;
the first author played through 10 of these games to produce
screenshots during dungeon crawling and card combat which
were used for the user study described in Section

IV. USER EVALUATION

In order to assess the coherence and relevance of the
generated assets within the game context, a user study was
conducted. The design of the study is described in Section
[[V-A] and its results in Section [V-B]

A. Experimental Protocol

The study aimed to address two research questions: (a)
whether the thematic details which guided every aspect of the
generation of both text and visuals were clearly discernible in
the final result and (b) whether the final results were appealing
to human players. To answer these questions, we leveraged
the game collection of 20 games (see Section [[II-D) and
produced one stimulus per game to show users: the first 5
games were used to produce Dungeon Crawling screenshots
(D1-D5), the next 5 games were used to produce Card Combat
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screenshots (C1-C5), and from the next 5 games we collected
text descriptions of one enemy (EI1-ES5). This means that 5
games were not shown to users, but their thematic details were
still used to potentially confuse users (as described below).
The games were selected in the order they were generated, and
there was no cherry-picking or preferential choice for any of
these screenshots, text descriptions, or survey questions.

For each stimulus, we collected relevant thematic details
of that game: setting, environment, epoch and visual style
for dungeon crawling screenshots, setting, epoch and visual
style for Card Combat screenshots (since the environment
was not visible), and setting and epoch for enemies’ text
descriptions. For each of these thematic details, we selected the
3 nearest respective thematic details among the remaining 19
games. Distance in this case was computed by the Foundation
Language And Vision Alignment (FLAVA) [32] model based
on the game’s own thematic detail in question (e.g. Setting).
FLAVA can map images and text to the same latent space,
thereby making it possible to quantify distances between vector
embeddings of text and images; moreover it is orthogonal to
OpenAl’s CLIP [31] similarity which is used for generation
of images in Stable Diffusion. In this way, each stimulus had
4 options for setting (one correct coming from this game’s
thematic details), 4 options for epoch, etc.

The study was designed to be carried out online, using
Google Forms. A link for participation was distributed through
the authors’ social media channels. The form was prefaced
by an informed consent form followed by questions about the
user’s game experience (but no demographic questions). The
form dedicated one page per stimulus: the stimulus was shown
first, then the user was requested to choose the appropriate
setting, epoch, environment or visual style (depending on the
stimulus) from a list of 4 options shown as a multiple-choice
question. The order of options was randomised in advance
and was the same for all participants. A final question per
stimulus asked users to rate its appeal on a 5-item Likert scale
(“The Screenshot is visually appealing” or “The Description
is entertaining to read”). The study was approved by the
University of Malta Research Ethics Committee. We highlight
that in this study, the users do not play the generated games,
but are only presented with static screenshots. This protocol
assumes that assessing coherence between final visual output
and theme can be done on static images (and text) with less
cognitive load than while playing, and the process is more
controllable for analysis as the authors have full knowledge of
what the users observed. Furthermore, allowing respondents
to play the game would expose them to a large number of
diverse assets which would have facilitated the identification of
the thematic descriptors. For example, in the introductory text
shown to the players, there may be phrases or words which
also appear in the theme’s setting, environment, or epoch. This
would skew the results of this survey, as it was designed to
assess whether each set of assets (Dungeon Crawling visuals,
Card Combat visuals, and pure text) individually represents
each thematic descriptor accurately or not.

Specifically, the hypotheses of the experiment (aligned with
the choice of stimuli) are listed below:

H1 The ability of the human evaluators to identify the intended

TABLE II: A summary of the user study results. The accuracy
of the answers is shown together with the entropy over the
responses for that question. An asterisk (*) denotes statistically
better outcomes (higher rating, higher accuracy, lower entropy)
than a random selection.

Accuracy (Entropy) Mean
# Setting Environment Epoch Style Rating
DI| 79%%* (0.37*%) | 68%%* (0.56*) 449%* (0.76%) 50%%* (0.89%) 2.5
D2| 82%%* (0.34%) | 94%%* (0.16%) 15% (0.3%) 47%* (0.89%) 3.4%
D3| 32% (0.79%) 15% (0.61%) 0% (0.67*%) 47%* (0.5%) 2.4
D4| 53%%* (0.8%) 74%%* (0.52%) 62%%* (0.73%) 27% (0.99) 32

D5| 41%%* (0.94) 29% (0.53%) 9% (0.73%) 68%* (0.61%) 32

Cl| 65%* (0.65%) = 18% (0.81%) | 71%* (0.58%) | 4.0%
2| 15% (0.51%) - 15% (0.66%) 35% (0.94) 3.9%
C3| 88%* (0.32%) - 0% (0.76%) 9% (0.82%) | 3.6%
C4| 97%* (0.10%) - 94%* (0.19%) | 100%* (0%) 3.6%
C5| 94%* (0.19%) - 100%* (0%) 15% (0.78%) | 3.8*
EL| 77%" (0.56%) - 0% (0.37%) - 31
E2| 79%* (0.52%) - 91%* (0.26%) - 3.4%
E3| 0% (0.59%) - 77%* (0.46%) - 3.4%
B4| 79%%* (0.46%) - 68%* (0.67%) - 3.4%
E5| 82%* (0.39%) - 85%* (0.37%) - 3.5%

thematic details that guided the generation process is
significantly above chance level.

H2 The mean appeal of the generated game assets, as rated by
human evaluators, is significantly higher than the neutral
midpoint on a Likert scale.

These hypotheses respectively formalise the research ques-
tions posed at the beginning of this section.

B. Results

A total of 34 responses were collected through convenience
sampling. Most participants were gamers: only 6% claimed
they never play video games while 47% play regularly. Most
participants (61%) enjoy playing dungeon crawlers, while 21%
answered that they never played this genre. Similarly, 62% of
participants enjoy playing card-based video games, and 12%
had never played any.

We process the results in line with the hypotheses, and
compute metrics for each stimulus separately. To address H1
and assess coherence, we measure accuracy as the ratio of
participants’ responses that matched the game’s thematic details
over all responses. We also measure Shannon’s entropy [S3|
normalised to the number of options; if entropy is low, users
mostly agreed on the same choice (even if it was the incorrect
one, if accuracy is low). To address H2 and assess appeal, we
compute the mean rating from all participants’ ratings on the
5-item Likert question regarding appeal (see Section [[V-A).

We assess statistical significance (at p < 0.05) assuming
a random choice: for ratings, we test significance based on
the 95% confidence intervals of the mean rating against the
baseline Likert score of 3. For accuracy, we use the binomial
test assuming a 1 in 4 chance of choosing the right option
[54] and for entropy we use the X2 goodness of fit [S5]] which
tests whether the users’ answers fit an even distribution among
all options. The Benjamini-Hochberg False Discovery Rate
correction [56] was applied to all the above tests to limit false
positives, as it offers greater sensitivity than more restrictive
approaches.

Table || presents the summary of the above performance
metrics per stimulus (in the order that they were presented to



participants). Most stimuli were found to be appealing, with
ratings statistically above the baseline (Likert score of 3) in
10 of 15 cases. Card combat screenshots were overall rated
to be far more appealing than other stimuli; dungeon crawler
screenshots had more varied ratings, with 2 of 5 screenshots
ranking significantly below the baseline (D1, D3). In terms
of accuracy, we observe a variety in results. On the one hand,
accuracy was significantly higher than the random baseline
(25%) in 30 of 45 questions. On the other hand, accuracy
differed markedly across stimuli. While setting questions had
the highest accuracy on average (64%) there were still 3
instances out of 15 where accuracy was not significantly higher
than random chance—including a case where all 34 participants
guessed the setting incorrectly (for E3). Epoch questions
received the least accurate answers (average accuracy of 43%
and 6 of 15 cases not significantly above random chance)
followed closely by visual style questions (average accuracy of
45% and 4 of 10 cases not significantly above random chance).
We also observe that in many questions participants tended
to choose different options: 28 of 45 questions had over 0.50
normalised entropy score, and 7 of 45 over 0.80. While this
is not surprising in cases where the correct option was rarely
picked (e.g. for style of C3 which has an accuracy of 9% and
an entropy score of 0.82), the pattern persisted even when
accuracy was significantly above chance levels (e.g. for style
of D1 with 50% accuracy and an entropy score of 0.89). While
entropy scores heavily depended on the stimulus, we observe
that questions on visual style were more confusing, with a
higher average entropy (0.70) compared to other questions (the
average entropy of which fluctuated around 0.50).

In order to elucidate on the differences between users’
response patterns in different questions, we highlight some
indicative examples of dungeon crawling screenshots (D2, D3)
and card combat screenshots (C3, C4) in Table

As shown in Table D2 exhibited a high accuracy for
setting and environment, while D3 showed low accuracies in
both. For D2, all 6 users that did not guess the correct setting
(“A mystical underwater city”’) chose “A subterranean realm of
mushroom forests and crystal caves” instead. This is surprising,
since only 2 users did not guess the correct environment (“Coral
reefs, sunken temples, deep sea trenches”). Therefore, while
almost all users identified the marine environment (likely due
to marine fauna on the dungeon walls), some of those users
estimated that the setting is subterranean rather than marine-
themed (e.g. “A sunken pirate city in a stormy sea” or “A
mystical underwater city”). With regards to epoch, both D2 and
D3 had very low accuracies; in D3 no user guessed the correct
epoch. Admittedly, the options for the epoch questions in both
stimuli were unhelpful: most users chose “fantasy” for D2
(85%) while for D3 users were split between “science fiction’
and “space age” (50% and 41% respectively). Users likely
recognised established terms used e.g. in literature (fantasy,
science fiction). It is arguably difficult to depict concepts such
as “Ancient” and “Near future” (the correct choices for D2
and D3 respectively) both visually and semantically in a way
that clearly differentiates them from other competing terms
such as “Medieval” and “Science fiction” respectively. More
importantly, however, the setting seems dissonant from the

bl

TABLE III: Example stimuli and questions from the user study.
Checked options are the ones used to generate the game shown
(and should ideally be guessed by the users).

Which setting best describes the above Screenshot?

[J A subterranean realm of mush-
room forests and crystal caves

[J A sunken pirate city in a stormy
sea

X A mystical underwater city

[J A lost colony on an alien world

L] A lost colony on an alien world
X A drifting asteroid mining facility
[J A subterranean realm of mush-
room forests and crystal caves

[J An abandoned space station over-
run by mutants

What best describes the environment in

the above Screenshot?

[ Flooded streets, shipwrecks, trea-
sure troves

[ Trap-filled corridors, massive ma-
chinery, hidden chambers

X Coral reefs, sunken temples, deep
sea trenches

O Trap-filled corridors, mummies
and scarabs, hidden treasures

O Trap-filled corridors, massive ma-
chinery, hidden chambers

[0 Zero gravity corridors, mal-
functioning machinery, airlocks and
vents

X Gravity-less corridors, cryogenic
chambers, dark caves

O Trap-filled corridors, mummies
and scarabs, hidden treasures

[J Renaissance

Which epoch is depicted in the above Screenshot?
[J Fantasy [J Lost civilization
X Ancient [ Space age
O Medieval O Science-fiction

X Near future

What best describes the visual style in the above Screenshot?

[J Semi-abstract, vivid alien land-
scapes

[ Digital matte painting, cold color
palette

X Stylized realism, bioluminescent
color palette

[ Mystical realism, moody

O Science-fiction, gritty

[J Retro-futuristic, vibrant and nos-
talgic

X Science-fiction, minimalist

[ Retro-futuristic, neon-lit

C4

Which setting best describes the above Screenshot?

[T An enchanted forest on a floating
island

X A lost colony on an alien world
[ A subterranean realm of mush-
room forests and crystal caves

O A mystical underwater city

[J An ancient Roman city swal-
lowed by a volcano

X An ancient labyrinth beneath a
desert pyramid

O A forgotten underground library
O A lost colony on an alien world

Which epoch is depicted in the above Screenshot?

[J Near future

[0 Science-fiction
X Space age

[J Lost civilization

X Ancient Egypt
[J Medieval

[ Fantasy

[J Science-fiction

Which epoch is depicted in the above Screenshot?

X Semi-abstract, vivid alien land-
scapes

[ Science-fiction, minimalist

[J Retro-futuristic, vibrant and nos-
talgic

[0 Dreamlike, surreal

[ Grimy steampunk, surrealistic
[J Semi-abstract, vivid alien land-
scapes

X Egyptian relief, earthy tones

[ Science-fiction, gritty




epoch: mystical underwater cities are not associated with an
ancient era (except via the most abstract connections) while
asteroid mining facilities are not expected in the near future.
The issue is not one of possibility but one of tropes: tropes such
as mystical underwater cities abound in fantasy literature and
asteroid mining facilities are staples of science fiction movies.
Both D2 and D3 had the same accuracy (47%) for style, which
despite being modest, was significantly above chance levels;
however, entropy scores for the two stimuli differ widely. For
D2, style answers were distributed among the incorrect options
(the most popular incorrect choice being “Semi-abstract, vivid
alien landscapes” at 26%). For D3, all users that did not
choose the correct style (“Science-fiction, minimalist”) instead
chose “Science-fiction, gritty” (53%). Once again, we note the
tendency towards the keywords “science fiction” (evident in
the choice for epoch, above). The example highlights a more
general issue with the experimental protocol: by choosing
the semantically closest settings among the remaining 19
games, in many cases almost identical options were shown to
the user. While we omitted exact duplicate options from the
questionnaire, two of the style options here are only slightly
different; similar examples include options for epoch being
“Gothic Victorian” and “Victorian era” for D5. While there
is significant evidence from both the quantitative results of
Table [lI| and the examples of Table that epoch and style
were difficult to depict in an in-game screenshot, we revisit
the limitations of the experimental protocol in Section [V] To
finish the comparison between D2 and D3, we note that D2
had the highest rating across all dungeon crawler screenshots
(3.4) while D3 had the lowest (2.4). We surmise that the noisy
background for the floor tiles of D3 was responsible for the
low rating, while D2 had flat colours for floor tiles and sharp
contrasting colours for wall tiles. The organic shapes in the
walls might also be perceived as pleasant. It is worth noting
that while the visual style for D2 is reasonably retained via
“bioluminescent color palette”, the noisy floor tiles are not
representative of a “minimalist” visual style described in the
prompt. We revisit this limitation in Section [V]

For the card combat views, C3 and C4 are interesting in that
the setting is easily determined by the users for both stimuli,
but for C3 neither epoch nor style are guessed correctly. The
epoch options for C3 are identical to those for D3 (except
the order): no user chose the correct “space age”, with almost
equal picks between “near future” (41%) and “science-fiction”
(38%). This is an interesting observation, considering that
for D3 the correct “near future” option for epoch was never
chosen while “space age” (which was correct for C3) was
chosen by 41% of users in D3. Barring any ordering effects,
the users’ behaviour is difficult to explain. We hypothesise
that the background image for C3, which shows an indoor
view of a warehouse. does not indicate the “space age” due
to a lack of astronomical or starship elements (which are
admittedly not necessary since the Space age is a time period
rather than a location). The visual style options, however,
could explain why users rarely (9%) chose the correct “Semi-
abstract, vivid alien landscapes” (none of which are present
in the background image of C3) and instead mostly chose
“science fiction, minimalist” (50%) instead. As above, we are

reminded that visual style is difficult to convey unless both
the semantic description is very specific and SDXL can find
appropriate ways to depict this. A perfect case where both
conditions are met is C4: the style “Egyptian relief, earthy
tones” is much more specific than “science-fiction, minimalist”
(D3), but also easily conveyed visually in all respects in the
background of C4. All users guessed the correct visual style
for C4, the only case where this occurred in all screenshots
used for this user study.

V. DISCUSSION

The online user study asked 34 participants to rate game
content (screenshots and text descriptions) and guess the
thematic details used to generate them. The goal of the user
study (see Section was to assess whether the original
theme prompts are recognizable in the final game-ready content
(H1) and whether the generated assets are appealing (H2).
Participants rated 10 out of 15 screenshots or descriptions
significantly above neutral ratings; we thus consider H2 at least
partially validated. While the card combat view was always
found appealing, the dungeon crawling view could be severely
impacted by noisy backgrounds (e.g., floor tiles). Participants
accurately guessed the thematic details from a screenshot or a
text description in 30 out of 45 instances (significantly above
random chance levels); H1 can thus be considered at least
partially validated. However, it was observed that visual style
and epoch were difficult to convey visually in-game. Through
qualitative analysis of the images and user responses, a snippet
of which is included in Section it can be argued that
the background of the card combat view played a major role
in conveying the thematic details. The thematic details were
typically conveyed successfully only when all such details were
highly specific (e.g., when describing a particular place rather
than a general genre trope).

The user study highlighted some limitations of CrawLLM
which were already evident from our internal playthroughs of
the games. Generating a consistent tileset was challenging and
required many revisions. The three-step process shown in Fig. 4]
overcomes several limitations of earlier trials, but is still prone
to producing noisy background tiles as evidenced in some of
the generated games (e.g. C3 in Table [[II). Future work could
address this by using image metrics such as complexity [57]]
and colourfulness [58]] to choose the least noisy option from
the many generated tiles of each tileset (see Fig. 4) instead of
randomly selecting among all options. Other limitations pertain
to the experimental protocol itself, which led to near-duplicate
options which confused users (e.g. options for style in Table [[TI).
Future user studies should perhaps remove near-duplicates and
show only closest neighbours above some minimum distance
threshold. A more critical limitation, however, pertains to
the way that some thematic elements control text and image
generation. Evidently, in many cases the visual style description
had no (visible) impact in the generation of many visual assets,
be it tilesets or card combat backgrounds. We hypothesise that
this may be a limitation of the prompting method: visual style
is among the last words in most prompts for visuals generation,
and may fall outside the context length of SDXL’s CLIP model



[31] or may be overshadowed by earlier parts of the prompt
(e.g. the description). However, it may also be a limitation
of the LLM that generates the visual style description. Some
visual styles are easier to act upon in follow-up steps (e.g.
“Egyptian relief”) than others (e.g. “semi-abstract”), but the
LLM that generates the visual style can not ascertain that—
in part because it is unaware of the purpose of its output.
In future work, a way to address this could be to request
adjustments by the LLM to the visual style description in cases
where results are improper (e.g. if tiles are too complex as
described above). Future work could also explore the impact
of reducing information passed on to the SDXL model: for
example, location descriptions may be too much information
for generating a background image for card combat, and the
location title and visual style alone could provide enough
control so that there is meaningful transfer in style. Similar
concerns can be raised about the epoch thematic detail: perhaps
omitting epoch altogether could lead to more concise generation
of follow-up assets—highlighting more important elements
such as the setting instead. Finally, a limitation of the current
paper is that we did not focus on analysing enemy descriptions
in the same way that we analysed screenshots in Table In
part, this is because enemy descriptions are not shown directly
to players in CrawLLM. Moreover, most enemy descriptions
received significantly above average ratings (and in most cases
high accuracies in guessing the thematic details) and thus we
focused on the mixed results from screenshots instead.
Another limitation pertains to the user study, which relied
on task-specific ad-hoc metrics rather than validated perceptual
scales [59]. While appropriate for the exploratory goals of
this study, future work could incorporate established aesthetic
judgment metrics or reliability analyses to further strengthen
claims about perceived quality. The playability of the CrawLLM
games also remain to be tested in actual playtest sessions—with
or without coherence and perceptual quality questions.
Future work should refine the gameplay loop of CrawLLM,
providing more complex interactions (and decision-making)
to the player and more opportunities for impactful generation.
This can be done via more complex enemy actions in combat
(to leverage mechanics generation), via rewards for combat
(e.g. themed action cards based on the enemy defeated, or
dialogue with the defeated enemy for narrative generation),
or via spatial puzzles during dungeon crawling (to elevate
level generation). The pipeline can also be applied to different
game genres, and also extended to accommodate generation
across more modalities, such as audio. These additions would
elevate CrawLLM, which currently relies fully on a pre-scripted
gameplay loop, to a true game generation pipeline with more
unexpected (and, ideally, thematically coherent) outcomes.

VI. CONCLUSION

This paper introduced CrawLLM, a novel pipeline that
generates coherent game assets using LLMs and text-to-image
models. The system produces narrative and visual compo-
nents for a dungeon crawler game with card-based combat,
operating on a feed-forward fashion to create playable games
without iterative refinement [1]. User evaluations indicated

that the generated games maintained thematic consistency,
with participants easily identifying settings and environments
in most cases, although epochs and visual styles were often
too broad or ambiguous. CrawLLM highlights the potential
of LLM-driven content creation across narrative and visual
elements. Our user study also revealed limitations, such as
the LLM’s tendency to produce vague definitions and the text-
to-image models’ struggles with less common visual styles.
Despite its capabilities, the feed-forward methodology may
not consistently yield optimal results without refinement. We
highlighted potential ways that iteration can be re-introduced
as part of the generative process in Section [V]
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