
Constrained Surprise Search for Content Generation
Daniele Gravina

Institute of Digital Games
University of Malta
Msida 2080, Malta

daniele.gravina@um.edu.mt

Antonios Liapis
Institute of Digital Games

University of Malta
Msida 2080, Malta

antonios.liapis@um.edu.mt

Georgios N. Yannakakis
Institute of Digital Games

University of Malta
Msida 2080, Malta

georgios.yannakakis@um.edu.mt

Abstract—In procedural content generation, it is often desir-
able to create artifacts which not only fulfill certain playability
constraints but are also able to surprise the player with unex-
pected potential uses. This paper applies a divergent evolutionary
search method based on surprise to the constrained problem of
generating balanced and efficient sets of weapons for the Unreal
Tournament III shooter game. The proposed constrained surprise
search algorithm ensures that pairs of weapons are sufficiently
balanced and effective while also rewarding unexpected uses of
these weapons during game simulations with artificial agents.
Results in the paper demonstrate that searching for surprise can
create functionally diverse weapons which require new gameplay
patterns of weapon use in the game.

I. INTRODUCTION

Procedural content generation has been used since the 1980s
in the game industry to quickly and computationally efficiently
create elaborate structures such as the dungeons of Rogue
(Toy and Wichman 1980) or the universe of ELITE (Acornsoft
1984). Commercially, procedural content generation (PCG) is
used primarily for two reasons: (a) to cut down on develop-
ment effort and time, and (b) to create unexpected, unique
experiences every time the game is played, thus increasing its
lifetime and replayability value. Due to the former, small teams
of game developers have been able to (procedurally) create
grandiose gameworlds such as those in Minecraft (Mojang
2011) and No Man’s Sky (Hello Games 2016). Due to the
latter, games such as Civilization V (Firaxis 2010) have been
immensely successful in retaining a userbase engaged despite
the lack of e.g. an overarching campaign.

Academic interest in PCG has often used search-based
processes [1] such as evolutionary computation to create game
content which optimize one or more game qualities deemed
important by the designers. To a degree, such gameplay
qualities are required from content in order to ensure the game
being playable and fair between players (e.g. in a competitive
game). On the other hand, a core motivation of commercial
PCG is the element of surprise it can elicit from players.
While the majority of PCG research focuses on creating
one final artifact which exemplifies the desired properties of
its type, there are several attempts at creating a diverse set
of content using e.g. multi-objective optimization [2], multi-
modal optimization [3] and novelty search [4].

This paper is inspired by earlier work on creating sets
of diverse artifacts [5], and applies a recently introduced
divergent search algorithm, namely surprise search [6], [7],

on the task of procedural content generation. In particular, the
goal is generating pairs of weapons for a competitive first-
person shooter game: the two weapons must be usable and
balanced between them, but also exhibit surprising behavioral
properties (i.e. different weapon pairs would allow different
types of gameplay or strategies to emerge). Towards that
end, constraints on usability and balance are satisfied via
a feasible-infeasible two-population approach (FI-2pop GA)
which guides infeasible content towards feasibility [8]. In
the feasible population, however, the weapon pairs evolve
towards surprising behaviors, i.e. behaviors that were not
predicted based on the previous generations. This constrained
surprise search algorithm is shown to create more diverse
content than objective-driven search. Moreover, its behavior
and performance is shown to be different than randomly
assigned fitness scores applied on the feasible population.

II. BACKGROUND

This section outlines the algorithm of surprise search which,
in this paper, is framed within constrained optimization for the
procedural content generation domain.

A. Procedural Content Generation

Compared to the historical use of procedural content gener-
ation in games, academic interest in PCG from the perspective
of artificial intelligence (AI) is relatively recent. PCG research
focuses on expanding the generative algorithms, going beyond
constructive approaches [1] which are carefully crafted scripts
used in the game industry to produce a limited range of content
which is however guaranteed to be playable. PCG research on
the other hand has used many different sets of algorithms, of-
ten revolving around evolutionary computation and constraint
satisfaction, among others. Broadly, evolutionary computation
under the umbrella term search-based PCG [1] evolves a large
population of artifacts towards a certain objective, usually
pertaining to in-game quality. Constraint satisfaction, on the
other hand, uses a carefully selected set of constraints to ensure
that all of the generated content is playable [9].

B. Constrained Optimization and PCG

While it would seem that constraint satisfaction and search-
based PCG are incompatible in terms of design approach, there
have been several attempts to integrate playability constraints
to search-based PCG [10], [4]. Often, the simplest solution is



to assign a minimal fitness score and kill off the infeasible
individual [3]. In highly constrained spaces, however, this is
not a desirable strategy as most genotypical information is lost
[11]. Indeed, if a population consists only of infeasible results
then assigning a minimal fitness results in random search. In-
stead, constrained optimization often utilizes penalty functions
[12] which reduce the fitness score of an infeasible individual.
Designing a penalty function can become as challenging as the
optimization problem itself, however, as very high penalties
can kill off all infeasible results while very low penalties can
lead to extraneous exploration of the infeasible search space.
A more recent solution to constrained optimization is the
feasible-infeasible two-population (FI-2pop) genetic algorithm
[8], which evolves two separate populations towards optimiz-
ing a problem-dependent objective (in the feasible population)
and minimizing the distance to feasibility (in the infeasible
population). The feasible population contains only individuals
which satisfy all constraints, while the infeasible population
contains individuals which fail one or more constraints; feasi-
ble offspring of infeasible individuals migrate to the feasible
population and vice versa. The benefit of the two-population
approach is that (a) there is no competition between feasible
and infeasible individuals, and (b) any search strategy can
be applied to either the feasible or the infeasible population.
Earlier research on game level generation has explored the
use of novelty search in the feasible population or in both
populations [4], in order to ensure that playable (due to the
constraints) yet diverse (due to the divergent search) game
levels were being produced. The current paper explores the
use of surprise search [7], a recent but promising divergent
search method, on the feasible population for the purposes of
creating balanced but surprising weapons.

C. Surprise search

Surprise search [6], [7] is a new algorithm for evolutionary
divergent search which rewards unexpected — rather than
unseen — behaviors. Surprise search uses a prediction model
to construct the expected outcomes at the current stage of
evolution; when evaluating the actual outcomes in the popu-
lation, it rewards those which deviate from the expected [13].
This mimics a self-surprise process [14], where individuals
who do not conform to the evolutionary trend are selected
and ensuingly create their own trend which new individuals
must again diverge from. The algorithm has been shown to
outperform objective search in deceptive problems and to be
more robust than novelty search in a maze navigation task [7].
Surprise search is composed by two main modules: a predic-
tive model based on past behaviors and a distance formula to
assess deviation from the expected outcomes. Surprise search
uses the prediction model (m) to create a speculative ‘cur-
rent’ population, based on h previous generations; the model
considers a degree of local (or global) behavioral information
(expressed by k). The predictive model is described in eq. (1);
more details about m, h and k are found in [7].

p = m(h, k) (1)

The surprise score, used for selecting individual i in the current
population, is based on the distance of the closest n prediction
points obtained with the prediction model m:

s(i) =
1

n

n∑
j=0

ds(i, pi,j) (2)

where ds is the domain-dependent measure of behavioral
difference between an individual i and its expected behavior,
pi,j is the j-closest prediction point (expected behavior) to in-
dividual i and n is the number of prediction points considered;
n is a problem-dependent parameter determined empirically.

III. METHODOLOGY

The goal of the generative algorithms is the creation of
pairs of usable and balanced weapons which exhibit surpris-
ing behavioral characteristics. The weapons are used in the
commercially successful Unreal Tournament III (Epic Games
2007) game (UT3). Besides its commercial appeal, UT3 has
well-designed game levels and AI modules which allow for
simulations of game matches in order to derive behavioral
properties of the weapons. Weapons in UT3 are already quite
diverse, which allows the genetic algorithm to explore different
sets of parameters such as bouncing bullets, grenades affected
by gravity, or exploding projectiles.

A. Representation & Genetic Operators

In the genotype, each weapon is represented by 11 pa-
rameters with different value ranges and in-game properties
as shown in Table I. Since the generator evolves pairs of
weapons (one per player in a deathmatch FPS game), the
genotype therefore consists of 22 chromosomes, 11 for each
weapon. Evolution is carried out by applying simulated bi-
nary crossover with a 60% probability, and simulated binary
mutation with a 5% probability. These parameters have been
chosen empirically via pre-experimentation conducted in [5].
Simulated binary crossover [15] applies a polynomial proba-
bility distribution (controlled by the maximum and minimum
values of each parameter in Table I) to chromosomes; another
parameter (η = 20 as suggested in [15]) controls how much the
offspring will resemble their parents. This crossover strategy
ensures that the weapon of each player will be a combination
of parameters of weapons used by the same player (i.e.
weapons cannot be assigned to a different player from gen-
eration to generation). Simulated binary mutation performs a
similar modification with a chance of 5% for each parameter in
the gene. Using the same η value, modifications via mutation
depend on the value range of each weapon parameter (e.g. low
η values result in large mutations).

B. Simulations

The two weapons evolved in this scenario are tested by two
AI-controlled agents competing for the highest number of kills
in a UT3 level. Experiments in this paper use the Biohazard
UT3 level, which is small and thus ideal for one-versus-one
matches; moreover, it consists of two separate floors which
makes logging player positions easier. Each player is given



TABLE I
PARAMETERS OF EACH WEAPON WITH THEIR CORRESPONDING VALUE RANGE AND DESCRIPTION.

Name Value Range Description
Rate of Fire (ROF) [0, 4] Number of bullets shot per second
Spread (Spr) [0, 3] This parameter affects the random deviation of the bullets trajectory: the higher the spread

the less accurate the shooting.
ShotCost (SC) [1, 9] Number of bullets shot at once by the weapon.
Lifetime (L) [0, 100] Amount of time the bullets remain in game when shot.
Speed (Sp) [0, 10000] Speed of bullet when shot.
Damage (Dmg) [0, 100] The amount of damage that each shot deals when it hits an opponent. In case of SC > 1,

each bullet has Dmg/SC damage per bullet.
Collision Radius (CR) [0, 100] Radius of the collision sphere of bullets (for hitting enemies).
Gravity (Gr) [-250, 250] Gravity force applied to bullets: the larger the value, the stronger the g acceleration applied

to the bullet. For positive values, gravity is reversed (the bullet goes upwards).
Explosive (Exp) [0, 300] When a bullet hits a target (opponent, object or wall), it generates an explosion with radius

equal to this parameter. All players within the radius of an explosion receive splash damage
(a fraction of the weapon’s damage depending on distance).

Ammo (A) [1, 999] Maximum amount of ammunition; all ammo packs increase ammo up to this value.
Bounce (B) [0, 1] Boolean value that says if the projectile will bounce when it hits a wall.

one weapon and ammunition as defined in the genotype; if
they pick up any weapon or ammo in the level then the ammo
for their generated weapon increases by the ammo value in the
genotype (i.e. players cannot pick up other weapons, including
the other player’s weapon). This ensures that each player tests
only one weapon: these simulations allow for a comparison in
terms of balance of the weapons, as well as for evaluating their
effectiveness (if it kills the opponent often) and safety (if it
does not result in the wielders shooting themselves). Moreover,
simulations are used to create a map of the death locations
of each player; these act as behavioral characteristics of the
weapons and are used to assess unexpected behaviors in the
surprise search algorithm. Simulations last up to a time limit
of 1200 seconds or until a score limit of 20 is reached in terms
of the total number of kills of the two players.

Since simulations require that AI agents use weapons of
variable quality, the system provides suggestions to the AI
behavior based on each weapon’s parameters. For instance, if
the weapon is a fast repeater (i.e. a rate of fire above 2) the
AI is instructed to use it for long sequences of shots. If its
bullets have a long lifetime, high speed and low spread, the
AI is instructed to use it for long distance shots. Finally if the
bullet has an explosive value above 50, the AI is instructed to
treat it as a splash weapon, which relies less on accuracy.

C. Constraints

There are certain playability requirements for the generated
weapons: balance, effectiveness and safety. Each of these
properties can be evaluated as a scalar value, via heuristics
discussed below, based on simulations between AI controlled
agents. A pair of weapons is considered playable (i.e. feasible)
if each property is above a specific threshold. Moreover, for
infeasible individuals the heuristics can be used to derive the
distance from feasibility with regards to each constraint.

Balance is computed as the Shannon Entropy [16] of the
kills obtained by the two agents:

fb =
1

n

n∑
j=0

(
ki
K
log

(
ki
K

))
(3)

where K is the total number of kills obtained by the two agents
in a simulation, ki are the kills obtained by i-th bot and n is
the number of players per simulation.

Effectiveness is calculated by dividing the total number of
kills obtained in the simulation by the maximum score limit:

fe =
K

Smax
(4)

where Smax is the score limit (Smax = 20 in this study) which
must be attained for the level to be considered completed
before the time limit expires.

Safety is introduced due to initial random weapons being
dangerous to the wielder (due to high explosive values), and its
goal is to make evaluations more robust against noise. Safety
is computed in eq. (5) where the exponent is the number of
suicides (i.e. deaths not scored as another player’s kill):

fs = 0.9D−K (5)

where D is the total number of agents’ deaths in a simulation.
The feasibility constraint is satisfied if fb ≥ 0.9; fe ≥ 1

(i.e. if exactly 20 kills are scored); fs ≥ 0.9 (i.e. if there’s at
most one suicide). The rationale for the strict thresholds for
effectiveness and safety are to avoid creating sparse heatmaps
of death locations (due to low effectiveness) or death locations
originating from suicides (due to low safety).

D. Constrained Surprise Search

Constrained surprise search fuses the properties of FI-
2pop constrained optimization [8] with surprise search [7]
evolving the feasible population. The proposed algorithm
uses two populations which evolve towards different goals.
The feasible population contains individuals which satisfy
all constraints listed above, while the infeasible population
contains individuals which have at least one of safety, balance
and efficiency below the minimal threshold. The infeasible
population assigns its members a fitness equal to fb +fe +fs,
regardless of whether some of the values of these properties are
above the feasibility threshold. This favors individuals which
satisfy more constraints to others which satisfy no constraints,
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Fig. 1. An example of the prediction model of surprise search in this paper, at generation t. The first two sets of heatmaps are computed in the last two
generations, Ht−2 and Ht−1; the death location density is always normalized per floor. Using linear interpolation, the difference Ht−1 −Ht−2 is computed
and applied to Ht−1 to derive the predicted current population’s Ht truncated to [0, 1]. An individual’s death locations are mapped to Ht to calculate the
surprise score per eq. (6).

although some averaging artifacts may occur. Unlike tradi-
tional FI-2pop approaches, the infeasible population attempts
to maximize this value, as the three properties act as objectives
(with minimal value constraints).

Due to the highly constrained search space that evolution
has to tackle, several steps are taken to make search in the
feasible population more effective. Both populations select
parents based on tournament selection (tournament size of
3), but the best individual of each population is copied as-is
to the next (elitism of 1). This elitism ensures that at least
one feasible individual will remain in the feasible popula-
tion. Moreover, if the feasible population is smaller than the
infeasible population, an offspring boost [4] is applied: the
offspring boost forces the (larger) infeasible population to only
produce offspring equal to 50% of the total population while
the feasible population produces more offspring than it has
parents, equal also to 50% of the total population.

In the feasible population, surprise search attempts to devi-
ate from predicted behavioral trends of the current population.
Behavior of a weapon is considered to be the playtraces of
the player who wields it, and in particular the locations where
their opponent died in this one-versus-one deathmatch game.
Since the genotype contains two weapons and the Biohazard
level consists of two floors, this creates a total of 4 heatmaps
of death locations of each player. These heatmaps assign
each death on a tile of a low-resolution grid (10 by 13
tiles per floor), incrementing the value (or heat) of that tile;
example heatmaps are shown in Fig. 1. Note that heatmaps are
normalized to a range of [0, 1] based on the maximum heat
value of each map (i.e. per floor and per player).

Surprise search attempts to deviate, therefore, from the
expected heatmaps of this generation: i.e. have death locations
which are unexpected based on the current evolutionary trends.
Surprise search focuses on diverging from predictions p (see
eq. (1)) of the current population, calculated by observing the
previous generations’ behavioral changes. This paper uses only
the populations of the last two generations (h = 2; eq. (1)) to
predict the current population, applying a linear interpolation
(m is a linear regression model in eq. (1)). The model, m,
considers the population as a whole (k = 1; eq. (1)). In

short, when predicting the heatmaps Ht for a population at
generation t, the heatmaps of the population at t − 2 (Ht−2)
is subtracted from those of the population at t − 1 (Ht−1)
to calculate ∆H . The prediction of Ht is obtained by adding
∆H to Ht−1, ensuring that its values fall within [0, 1] in all
4 heatmaps. Figure 1 illustrates this procedure.

In order to derive a surprise score for an individual i (which
the surprise search algorithm attempts to maximize), the loca-
tions of its agents’ deaths are mapped to the appropriate cell of
predicted heatmaps Ht (depending on floor and player). The
surprise score is calculated in eq. (6), as the complementary
of the average cell values of Ht where deaths occurred in
individual i. This rewards individuals which diverge from the
predicted consensus of the general population.

s(i) = 1 − 1

D

∑
d∈D

Ht(d) (6)

where D is the number of deaths of all agents in individual
i and Ht(d) the cell value of Ht at the location of death
d. This rewards individuals which diverge from the predicted
consensus of the general population.

This evaluation of surprise is different from that of novelty
used in novelty search [17], as the latter deviates from the
actual population rather than its prediction. By using a predic-
tion of the population, surprise search creates data (heatmaps
in this case) which may never be attainable: diverging from
such may push search in unexpected areas of the space.

IV. EXPERIMENTS

This paper aims to generate surprising weapons which have
a modicum of balance, safety and efficiency. Towards evalu-
ating constrained surprise search in terms of these different
priorities, several tests are performed on the results of 25
independent optimization runs of constrained surprise search.
The algorithm is compared with two baseline algorithms in
terms of constraint satisfaction and diversity preservation;
the most diverse solutions of constrained surprise search are
then assessed in terms of their use by AI agents in game
simulations; finally, a sample set of weapons evolved by
constrained surprise search is presented in detail, showcasing
how the different weapons are surprising yet balanced.
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(a) Feasible individuals.
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(b) Feasible clusters obtained with DBSCAN.

Fig. 2. Progress of two different performance metrics over the course of evolution averaged from 25
independent runs. Error bars depict standard error.
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Fig. 3. Feasible clusters obtained with DBSCAN
in the combined final populations of multiple evo-
lutionary runs.

A. Comparison with other methods

In order to assess the performance of constrained surprise
search, its outcomes and overall optimization progress will
be compared to two benchmarks: (a) objective search, which
attempts to optimize the sum of balance, safety and efficiency
(fb + fs + fe), (b) constrained random search, which uses
the FI-2pop paradigm but performs random search on the
feasible population. The objective search does not need two
populations, as it essentially amounts to the search in the infea-
sible population without minimal feasibility requirements. The
constrained random search evolves the infeasible population to
maximize fb + fs + fe while the feasible population assigns
a random fitness within [0, 1) to each of its members.

For the purposes of comparing the performance of the three
algorithms, it is not straightforward which performance met-
rics are most appropriate for evaluating surprise or diversity.
On one hand, it is relevant to evaluate how well-suited each
algorithm is for constrained optimization: for that reason we
use the number of feasible individuals as a measure of how
the different search methods on the feasible space (in the
case of surprise and random search) may create infeasible
offspring from feasible parents. In order to evaluate diversity
in the feasible population, we use the pairwise genotypic
distance of feasible individuals to measure how different (at
least in terms of weapon parameters) the genotypes are. The
genotypes’ values are normalized between [0,1] via min-max
normalization based on each parameter’s value range in Table
I. However, it should be noted that the number of feasible
individuals in the population may not be sufficiently diverse,
and thus a smaller set of the most diverse results would be
more appropriate both for in-game use and as a performance
metric. In previous work [3], this set of “solutions” was
discovered via k-medoids where k was a property specified
by the designer. In this paper, such solutions are obtained
by DBSCAN [18] which can return a variable number of
clusters (and their medoids) depending on the distribution of
data. Therefore, it is possible to gauge the diversity of the
population based on the number of clusters found by DBSCAN.
DBSCAN is a density-based clustering technique [18] which
groups individuals based on their nearest neighbor distance.

DBSCAN depends on two parameters: a distance ε,which is
the distance from a randomly chosen point for considering its
neighbors, and the minimum number of points within ε from a
random point in order to be considered a cluster; in this paper
ε is 0.2 and the minimum number of points is set to 1.

Reported results are collected from 25 independent opti-
mization runs per approach; evolution lasts for 50 generations
and is performed on a total population size of 50 individu-
als. Reported significance is obtained from two-tailed Mann-
Whitney U-tests at a 5% significance level.

Figure 2a shows the number of feasible individuals for each
method, as evolution progresses. It is immediately obvious that
at the start of evolution there are no feasible individuals, which
indicates a highly constrained search space. Since all methods
evolve infeasible individuals towards the same objective, it is
not surprising that all methods discover the first feasible indi-
vidual in approximately the same generation, i.e. generation 10
or so. More interestingly, the number of feasible individuals (in
a total population of 50) keeps increasing throughout evolution
as more and more infeasible individuals approach the border
of feasibility. With the offspring boost, ideally the feasible
individuals would be equal to the infeasible ones; however,
feasible parents are more likely to create infeasible offspring
than the reverse and thus feasible individuals are fewer.
Objective-driven search tends to create more feasible results,
while interestingly random search on the feasible population is
not more destructive (in terms of feasible population size) than
surprise search. Objective-driven search is expected to create
more feasible individuals, primarily due to the fact that it uses
a single population: therefore, feasible results are more likely
to get selected (multiple times) and thus create more feasible
offspring. Despite the feasible offspring boost in the FI-2pop
approaches, this single population approach which continually
tries to improve upon the constraints (even after all constraints
are satisfied) is more efficient at creating feasible results.

DBSCAN is able to identify distinct clusters, so the number
of clusters should be an indication of the population’s diver-
sity: essentially, DBSCAN plays the role of a designer choos-
ing the most representative weapons (the clusters’ medoids).
The number of clusters found among feasible individuals
(for a threshold of 0.2) is shown in Fig. 2b. While the



TABLE II
PERFORMANCE METRICS AT THE END OF 50 GENERATIONS. RESULTS ARE

AVERAGED FROM 25 INDEPENDENT RUNS, WITH THE STANDARD ERROR
SHOWN IN PARENTHESES. DIVERSITY REFERS TO THE AVERAGE PAIRWISE

GENETIC DISTANCE.

Surprise Objective Random
Feasible Individuals 16.6 (1.28) 22.5 (1.98) 13.8 (1.29)
Feasible Clusters 5.84 (0.78) 4.04 (0.58) 2.96 (0.40)
Individuals’ Diversity 0.29 (0.03) 0.26 (0.02) 0.24 (0.02)
Medoids’ Diversity 0.33 (0.04) 0.28 (0.03) 0.26 (0.04)

objective-based approach creates more feasible individuals,
it is obvious that these individuals are genotypically similar
leading to fewer clusters than the smaller feasible population
of constrained surprise search. As the first feasible individuals
appear in the population, both objective-driven search and
surprise search start with a diverse population (and thus
many feasible clusters). However, as objective-based selection
prioritizes feasible individuals almost exclusively (i.e. when
the number of feasible individuals increases after generation
20), objective-driven search converges to a few promising
areas of the search space resulting in a drop in the number of
clusters. By comparison, the behavioral surprise prioritized by
surprise search manages to better preserve the genetic diversity
of the initial feasible individuals. It should be noted that in
the 25 runs performed for the reported results, there is a large
deviation, on average, between the number of clusters for every
approach, as can be gleaned from Fig. 2b.

Table II shows the final scores of the different performance
metrics at the end of 50 generations. While constrained
random search is able to maintain a sufficiently large feasible
population, the number of distinct clusters found by DBSCAN
is significantly lower (p < 0.05) than those of constrained sur-
prise search. Objective search creates significantly more fea-
sible individuals on average than constrained surprise search
(p < 0.05), but they are not as diverse (based on the number
of clusters); due to large deviations in the number of clusters,
significance can not be established. As additional metrics, the
average pairwise genotypic distance of all feasible individuals
and of the cluster medoids is compared. Constrained surprise
search tends to create more genotypically different medoids
than both objective search and constrained random search.

As another measure of diversity, DBSCAN is applied on the
final populations of multiple evolutionary runs and the number
of discovered clusters is plotted in Fig. 3. Surprise search
seems robust at finding clusters in the combined populations,
and thus does not converge to the same local optima in
every run. With few runs, the differences between random and
objective search are minimal while surprise search finds far
more clusters; the order of evolutionary runs being combined
could have a minor effect in this. DBSCAN finds 146 feasible
clusters in 415 feasible individuals collected from 25 runs of
surprise search, versus 101 clusters in 563 feasible individuals
of objective search. Indicatively, Fig. 3 shows that collecting
40 distinct weapon pairs (i.e. medoids) requires 6 runs of
surprise search versus 11 and 14 runs of objective and random

TABLE III
GAMEPLAY METRICS OF ALL CLUSTER MEDOIDS OF ALL 25

INDEPENDENT RUNS OF CONSTRAINED SURPRISE SEARCH. RESULTS ARE
AVERAGED FROM 10 SIMULATIONS, WITH DEVIATION BETWEEN MEDOIDS

IN PARENTHESES.

Both floors 1st Floor 2nd Floor
Total Kills 15.14 (0.27) 10.81 (0.18) 4.29 (0.15)
Kills 1st 7.83 (0.21) 4.32 (0.22) 3.51 (0.08)
Kills 2nd 7.3 (0.21) 5.11 (0.18) 2.19 (0.08)
Balance 0.87 (0.009) 0.84 (0.011) 0.71 (0.016)
Entropy 1st 0.71 (0.002) 0.63 (0.001) 0.74 (0.003)
Entropy 2nd 0.72 (0.003) 0.64 (0.002) 0.76 (0.004)

search respectively. Combined with a slightly higher medoid
diversity, surprise search seems preferable for discovering
more diverse weapons at a lower computational cost.

B. Gameplay Qualities of Weapons

In order to assess a modicum of the gameplay uses of the
generated weapons, all cluster medoids discovered in the 25
surprise search runs were tested in 10 simulations each. Table
III shows certain gameplay metrics of these weapons, averaged
from 10 simulations: ‘1st’ and ‘2nd’ refers to the first and
second player, while ‘entropy’ refers to Shannon’s Entropy of
the death locations’ heatmaps on both floors.

From Table III, it is clear that the number of total kills are on
average below the minimal playability thresholds set in Section
III-C; this points to a very noisy simulation-based evaluation.
During optimization, it seems that a single simulation can
decide that a weapon pair is playable in one generation and
reject the same pair in the next. Based on the number of kills
for each player, the calculated balance for the weapon pair
is 0.87 on average, which is also slightly below the minimal
threshold for fb. Suicides on the other hand remain low at
an average of 0.44 (standard error of 0.04), and therefore the
safety constraint is always satisfied.

An interesting insight from Table III is the gameplay differ-
ence between the two floors: significantly more kills occur in
the 1st floor for both weapons (p < 0.05), which should not
be surprising since the second floor is not as accessible and
offers a better vantage point to fire at enemies below. On the
other hand, deaths in the second floor are significantly more
dispersed spatially (based on Shannon’s entropy) than those in
the first floor (p < 0.05): this is also obvious from Ht−1 and
Ht−2 of Fig. 1. This is can be traced to the fact that the second
floor is in theory larger; moreover the second floor includes
narrow bridges which partition the space and therefore players
tend to die on opposite ends of that floor. The differences in
both number of deaths and entropy of death locations could
affect the performance of surprise search, however, which
currently normalizes each heatmap individually; if the first
floor has far more deaths than the second floor, treating them
equally in terms of surprise places unnecessary impact on the
second floor. A potential solution in future experiments could
be to normalize heatmaps based on the total number of deaths
rather than the number of deaths per floor and per player.



C. Sample Weapons

In order to discuss a sample of the generated weapons in
more detail, a weapon pair was chosen agnostically among
the DBSCAN cluster medoids for surprise search; there is
no assumption that this weapon pair exemplifies all generated
content. For the sake of screenshots, weapons use the shock
rifle weapon model and bullet effects in UT3.

Figure 4a shows a genotype collected after 50 generations
of constrained surprise search. The first weapon fires very
concentrated projectiles (maximum shot cost and very low
spread) with no gravity and very low speed; the second weapon
shoots very fast projectiles, with no spread and high damage.
Trying these two weapons as a player, one quickly realizes that
the first weapon creates ‘mines’ around the map (see Figure
4b): its bullets are extremely slow, with a large blast area
(explosive, high collision radius) and they can also bounce on
walls or the level’s floor. Moreover, these ‘mines’ are fired
in clusters (high shot cost) as seen in Fig. 4b, thus costing a
lot of ammo (of which the weapon has little). This weapon
seems over-powered, allowing its wielder to control the map;
however as the bullets do not have a long lifetime, they are
effective only if the opponent is nearby and running towards
the wielder. Meanwhile, the second weapon is very similar to
a rifle: high-damage fast bullets which shoot straight (trivial
gravity effects) with a very low collision radius, thus requiring
precise aiming. Unlike traditional rifles, however, the weapon’s
bullets have some explosive qualities. Obviously, a match-up
between these two weapons requires a very different strategy
from each player: the first weapon requires its wielder to
move around the level, laying ‘mines’ in chokepoints when
the other player is nearby. Meanwhile, the player with the
second weapon does not need to move as much (also in order
to avoid any mines) as she can fire her high-speed, precise and
lethal bullets from a remote location.

V. DISCUSSION

The primary goal of this paper was to discover balanced
and efficient, yet surprising weapons via constrained surprise
search. Results indicate that constrained surprise search tends
to evolve genotypically more diverse pairs of weapons, which
have unexpected in-game uses. The FI-2pop paradigm also
allows this method to discover feasible individuals quickly
and consistently; preliminary experiments with surprise search
or random search on a single population without constraints
failed to find feasible results at any point of their evolu-
tion during 50 generations. Comparing constrained surprise
search with constrained random search shows a (statistically)
significant improvement of the former in terms of number
of clusters: this indicates that surprise search is substantially
different in terms of both process and results than random
search. On the other hand, performing objective search on a
single population finds significantly more feasible individuals;
due to the selection pressure towards feasible individuals,
however, much of the genetic diversity is eventually lost.
While objective search has more feasible individuals, those are
not necessarily as diverse or interesting as in surprise search.
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(a) Sample weapon pair evolved via constrained surprise search.

(b) Weapon 1, evolved via constrained surprise search.

Fig. 4. Example of weapons evolved via constrained surprise search

There is an obvious limitation to the generalizability of
the results reported in this paper, for several reasons: (a) the
high deviation in the performance metrics from one run to
the next makes assessing significance problematic, (b) there
are many parameters which could be fine-tuned to improve
both the algorithms and the assessment method. Regarding the
deviation found in reported values, the need for simulations
of full games (lasting up to 20 minutes) to assess each
individual prevents extensive experiments for parameter tuning
or for more runs to assess significance. Future work should
explore how surprise search performs with different behavioral
characteristics, as well as compare its performance against
more methods including two-population objective search or
two-population novelty search [4]. Finally, the choice of ε in
DBSCAN also affects the results and conclusions; with a much
lower ε the more numerous individuals of objective search
create more clusters (e.g. with one individual per cluster), and
with a much higher ε all methods create a single cluster.

Surprise search in this particular problem predicts the be-
havior of the population as a whole, based on the behavior of
the previous two populations. In the general predictive model
of eq. (1), the current approach uses the simplest predictive
model m (a linear model), the shortest history (h = 2)
and there is no locality as the model aggregates the entire
population (k = 1); for this reason the distance calculation in
eq. (2) considers one neighbor (n = 1). Obviously there is
a broad range of parameters to explore in order to improve
the performance of surprise search, such as using a non-
linear regression model or including a form of archive as
in novelty search [17]. Another possible improvement could
be choosing another behavioral characteristic to deviate from:



currently the system considers a “heatmap” of death locations;
this heatmap is relatively sparse, also considering that the
level has two floors. In many cases the differences between
two such heatmaps is circumstantial, also due to the high
stochasticity of combat; this was mitigated by using the lowest
locality for surprise search and aggregating a heatmap for the
entire population. Other behavioral characteristics could be
considered, such as players’ movements in the level or scalar
gameplay values such as the entropy and ratio of kills in each
floor or the distance between players at the time of death.

Finally, it should be noted that simulations with AI op-
ponents are a necessity due to the numerous matches which
need to be played per generation during evolution. The enemy
behavior in UT3 is quite well-designed and competitive (at
least for novice players), unlike many open-source games
such as Cube 2 used in other experiments [19]. However,
the AI in UT3 is designed for the weapons included in the
game which have specific parameters and uses; with generated
weapons, unexpected combinations of weapon parameters
such as high spread on a sniper rifle may result in less than
ideal agent performance. Currently, this is somewhat mitigated
when initializing simulations by instructing the AI that certain
weapons with certain properties should be treated as UT3
weapons (e.g. high lifetime weapons use the sniper rifle AI
module). However, completely unique weapons which do not
have any AI module may be impossible to use: for instance,
a mine weapon requires a very different navigational strategy,
going through chokepoints and leaving mines. While the AI
could be improved, it is perhaps more interesting to test the
final weapons generated by each approach in a user survey
with competing expert players. Observing emergent gameplay
strategies, and how the meta-game is affected by unexpected
uses of these weapons can offer a better insight of the usability
and balance of the generated weapon pairs.

VI. CONCLUSION

This paper introduced a constrained form of surprise search
and applied it on a procedural content generation problem. The
first goal of the generator is to create pairs of weapons for Un-
real Tournament III, which have a balanced and efficient per-
formance when played in simulated matches with AI agents.
Towards that end, a feasible-infeasible two-population genetic
algorithm was employed to maximize balance, efficiency and
safety on an infeasible population until those values were
above a required threshold. The second goal of the generator
is to create pairs of weapons which have surprising properties
and can result in interesting, unconventional gameplay. For this
purpose, surprise search is applied on the feasible population,
attempting to deviate from the expected behaviors of the AI
agents (i.e. their death locations) which were predicted from
past generations. Results in the paper show that the feasible-
infeasible approach is able to find feasible individuals quickly
and reliably, and that surprise search tends to create more
diverse (if not always more) content. Since the reported experi-
ment is small-scale, there is a broad range of future directions
for improving surprise search and its parameters, testing it

against more algorithms, and exploring other behavioral or
gameplay characteristics other than death locations.
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