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 Lecturer at the Institute of Digital 
Games, University of Malta.

 Research in procedural content 
generation, computer-aided game 
design, computational creativity.

 A. Editor of Transactions on Games

 General chair: FDG 2020, GALA 2019

 Passion for RPGs and board games.

 More at http://antoniosliapis.com/ 

Who am I?



 Can computational processes be creative? 

 Who should judge and what should be critiqued? 

 How can EC help such computational processes?

 How can EC benefit from comp. creativity?

Tutorial Outline
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Introduction to 
Computational Creativity



Human Creativity

Plato. Ion. In E. Hamilton and H. Cairns, editors, Plato:  The Collected Dialogues. Princeton University Press, 1961.
B. Jerey and A. Craft. The universalization of creativity. In A. Craft, B. Jerey, and M. Leibling, editors, Creativity in Education. 2001.
M. A. Boden. The creative mind:  Myths and mechanisms. Routledge, 2003.

 Ancient times: creativity treated as a quasi-mystical 
property, as an activity of the gods in us. 

 Recent times: creativity everywhere.

 big-c creativity (individualistic creativity of a genius)

 little-c creativity (every-day, social creativity)

 historical creativity (an idea that is new to the world)

 personal creativity (an idea that is new to the person)



Creativity Theories

E. De Bono. Lateral thinking: Creativity step by step. Harper Collins, 2010.

 Lateral thinking (thinking outside the box)



Creativity Theories

E. De Bono. Lateral thinking: Creativity step by step. Harper Collins, 2010.

 Lateral thinking (thinking outside the box)



Creativity Theories

T. Scaltsas and C. Alexopoulos. Creating creativity through emotive thinking. In Proceedings of the World Congress of Philosophy, 2013.

 Lateral thinking (thinking outside the box)

 Frames: a routine for tasks, a pattern of associations.

 Intervention that disrupts a frame, resulting in re-framing.



Creativity Theories
 Lateral thinking (thinking outside the box)

 Semantic reasoning (understanding linguistic structures)

T. Scaltsas and C. Alexopoulos. Creating creativity through emotive thinking. In Proceedings of the World Congress of Philosophy, 2013.



Creativity Theories

Ritchie, G., Manurung, R., Pain, H., Waller, A., O'Mara,D. (2006). The STANDUP 
Interactive Riddle Builder. IEEE Intelligent Systems 21 (2), p. 67-69. 

Veale, T., & Bell, N.E. (2016). The shape of tweets to come: Automating 
language play in social networks. Multiple Perspectives on Language Play. 

 Lateral thinking (thinking outside the box)

 Semantic lateral thinking

Q: What kind of berry is a stream? 
A: A current currant.

Q: How is an unmannered visitor 
different from a beneficial respite? 
A: One is a rude guest, the other is a 
good rest.



Creativity Theories

P. C.-H. Cheng, R. K. Lowe, and M. Scaife. Cognitive science approaches to understanding diagrammatic representations. 
Artificial Intelligence Review, 15(1-2):79{94, 2001.

 Lateral thinking (thinking outside the box)

 Semantic lateral thinking

 Diagrammatic reasoning (understanding data via diagrams)



Creativity Theories

G. N. Yannakakis, A. Liapis, and C. Alexopoulos. Mixed-initiative co-creativity.  
In Proceedings of the 9th Conference on the Foundations of Digital Games, 2014.

 Lateral thinking (thinking outside the box)

 Semantic lateral thinking

 Diagrammatic visual and analogical lateral thinking.



Creativity Theories
 Lateral thinking (thinking outside the box)

 Semantic lateral thinking

 Diagrammatic visual and analogical lateral thinking.

 Emotional lateral thinking (theory of mind in creativity)

T. Scaltsas and C. Alexopoulos. Creating creativity through emotive thinking. In Proceedings of the World Congress of Philosophy, 2013.



Creativity Theories

G. N. Yannakakis, A. Liapis, and C. Alexopoulos. Mixed-initiative co-creativity. In Proceedings of the 9th Conference on 
the Foundations of Digital Games, 2014.

 Lateral thinking (thinking outside the box)

 Frames: a routine for tasks, a pattern of 
associations.

 Intervention that disrupts a frame, 
resulting in re-framing.

 Semantic, diagrammatic and emotional
lateral thinking



“Computational Creativity is the art, science, 
philosophy and engineering of computational 
systems which, by taking on particular 
responsibilities, exhibit behaviors that 
unbiased observers would deem to be creative.”

What is Computational Creativity?

The Journal of Computational Creativity https://jcc.computationalcreativity.net/ 



 Which processes can be deemed creative?

 Which output can be deemed creative?

 Which domain can be deemed creative?

CC Questions



CC processes

Combinatorial Creativity:
Pre-fabricated building blocks, 

combined together in unexpected ways

M.A. Boden “The Creative Mind: Myths and Mechanisms” Routledge (2003) 



CC processes

Exploratory Creativity:
Searching a pre-defined conceptual 

space for the best/most creative solution

M.A. Boden “The Creative Mind: Myths and Mechanisms” Routledge (2003) 



CC processes

Transformational Creativity:
Searching in a conceptual space which

changes, and new combinations are possible

M.A. Boden “The Creative Mind: Myths and Mechanisms” Routledge (2003) 



 Combinatorial creativity

 Exploratory creativity

 Transformational Creativity

CC Processes



• Quality: To what extent is the produced item a 
high quality example of its genre?

CC outcomes

G. Ritchie: “Some empirical criteria for attributing creativity to a computer program”. Minds and Machines 17:76–99. 2007

Image from https://quantifyresearch.com/2018/03/28/two-vs-model-quality-control-validation-verification/ 



• Novelty: To what extent is the produced item 
dissimilar to existing examples of its genre?

CC outcomes

G. Ritchie: “Some empirical criteria for attributing creativity to a computer program”. Minds and Machines 17:76–99. 2007



• Typicality: To what extent is the produced item 
an example of the artefact class in question?

CC outcomes

G. Ritchie: “Some empirical criteria for attributing creativity to a computer program”. Minds and Machines 17:76–99. 2007



• Surprise: To what extent is the produced item 
violating expectations in the trends of both actual 
and possible designs?

CC outcomes

K. Grace and M. Lou Maher : “What to expect when 
you're expecting: The role of unexpectedness in 
computationally evaluating creativity”. 
Proceedings of the ICCC, 2014.



• Value

• Novelty

• Typicality

• Surprise

CC outcomes



 There is some (usually culturally-defined) class of 
artefacts which the program is to generate.

 The class is extremely large, possibly infinite.

 Given an item, there may not be a precise 
definition of whether it is in that class. 

 Given an item, humans can rate the (usually 
subjective) ‘quality’ of the item.

CC domain

G. Ritchie: “Some empirical criteria for attributing creativity to a computer program”. Minds and Machines 17:76–99. 2007



Artificial Evolution for 
Computational Creativity



Creative Process EC

 Combinatorial Creativity 

 Exploratory Creativity     

 Transformational Creativity 

Why is evolution ideal for CC?



Creative Output EC

 Value    

 Novelty  

 Typicality 

 Surprise 

Algorithms for CC



 Divergent Search

 Quality-Diversity

 Constrained Optimization

Algorithms for CC



Divergent Search
Algorithms



 Premise: ignore the objective of the problem

 The fitness landscape may be deceptive

 The objective function may be ill-formulated

 “Quality” may be subjective/intractable

 Goal: reward behavioral diversity

Divergent Search

D. E. Goldberg, “Simple genetic algorithms and the minimal deceptive problem,” in Genetic Algorithms 
and Simulated Annealing, Research Notes in Artificial Intelligence. Morgan Kaufmann, 1987.



 Rewards behavioral diversity

 Average distance to nearest neighbors

 Neighbors in current population & novelty archive

 Novelty archive: implicit memory

 Distance: based on behavior, not genotype

Novelty Search

J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through the 
search for novelty alone, ” Evolutionary computation, vol. 19, no. 2,2011.



 Theories of surprise
 curiosity: unexpected stimuli that a predictor can 

learn (not random, not predictable)

 regression  analysis on temporal dimension to  
predict  the “next” value of the attributes in designs.

Surprise

J. Storck, S. Hochreiter, and J. Schmidhuber. Reinforcement-driven 
information acquisition in non-deterministic environments. In Proc. 
ICANN'95, vol. 2, pages 159-164. EC2 & CIE, Paris, 1995.
M.L. Maher, D. Fisher, K. Brady: Computational models of surprise in 
evaluating creative design. Proceedings of the fourth international 
conference on computational creativity. 2013
L. Macedo and A. Cardoso. Modeling forms of surprise in an artificial agent. 
In Proc. of the annual Conference of the Cognitive Science Society, 2001.

 probabilistic model based on 
frequencies of objects/events 
in agent’s memory.



 Differences between Surprise and Novelty:

 Novelty: diverge from past seen behaviors

 Surprise: diverge from expected future behaviors

Surprise

G. N. Yannakakis, A. Liapis: Searching for Surprise, in Proceedings of the International Conference on Computational Creativity. 2016. 

High Novelty

High Surprise



 Reward individuals which exhibit behaviors 
which diverge from the expected behaviors 
of the current population based on prior 
observed behaviors. 

 Two-step process:

 Predictive model

 Divergence model

Surprise Search

D. Gravina, A. Liapis and G.N. Yannakakis: "Surprise Search: Beyond Objectives and Novelty," 
in Proceedings of the Genetic and Evolutionary Computation Conference. ACM, 2016.



Surprise Search

http://autogamedesign.eu/?page_id=200



Novelty+Surprise Search

 Optimizing both the novelty score and the 
surprise score:

 NSS: Linear combination as weighted sum

 NS-SS: Two objectives for multi-objective 
optimization with NSGA-II

D. Gravina, A. Liapis and G. N. Yannakakis: Coupling Novelty and Surprise for Evolutionary Divergence, In 
Proceedings of the Genetic and Evolutionary Computation Conference, 2017.
D. Gravina, A. Liapis and G. N. Yannakakis: Fusing Novelty and Surprise for Evolving Robot Morphologies, 
in Proceedings of the Genetic and Evolutionary Computation Conference, 2018.



Quality-Diversity
Algorithms



 Premise: a strong convergent force can hide 
promising areas of the search space.

 Goal: uncover as many diverse behavioral 
niches as possible, but where each niche is 
represented by a candidate of the highest 
possible quality for that niche.

Quality-Diversity

J.K. Pugh,  L.B. Soros, K.O. Stanley. Quality Diversity: A New Frontier for Evolutionary 
Computation. Frontiers in Robotics and AI (12). 2016.



 Multi-objective optimization (via NSGA-II)
of two objectives:

 Novelty score (see novelty search)

 Local competition score: how many of its nearest 
neighbors in the behavioral space it outperforms.

Novelty Search-Local Competition

Lehman, J., and Stanley, K. O. (2011). Evolving a diversity of virtual creatures through novelty search and local competition, in 
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (GECCO ‘11), Dublin (New York, NY: ACM), 211–218.



 Partition a feature map of behavioral features

 Store the fittest individual in each cell

 Select parents stochastically from the map

MAP-Elites

Mouret, J.-B., and Clune, J. (2015). Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909.



MAP-Elites

D. Gravina, A. Liapis and G. N. Yannakakis: "Blending Notions of Diversity for MAP-Elites,"
In Proceedings of the Genetic and Evolutionary Computation Conference, 2017.



Constrained Optimization
Algorithms*



 Premise: hard constraints can split the 
search space into islands of feasible 
solutions among infeasible solutions

 Solutions:

 Death penalty

 Fitness penalty

 Multi-objective approaches

Constrained Optimization

C.A Coello Coello. A survey of constraint handling techniques used with evolutionary algorithms. 1999
Michalewicz, Z.Do not kill unfeasible individuals. In Proceedings of the Fourth Intelligent Information Systems Workshop. 1995



 FI-2pop GA:

 Feasible pop.: domain-
dependent fitness

 Infeasible pop.: minimize 
distance to feasibility

 Indirect form of 
interbreeding

 Boost feasible offspring*

Constrained Optimization

Kimbrough, S.O., Koehler, G.J., Lu, M., Wood, D.H.: On a feasible-infeasible two-population (FI-2Pop) genetic algorithm for 
constrained optimization: Distance tracing and no free lunch. European Journal of Operational Research 190(2). 2008



 Feasible-Infeasible Novelty Search:

 Feasible pop.: maximize novelty score

 Novelty archive of only feasible solutions

 Feasible-Infeasible Dual Novelty Search

Constrained Novelty Search

A. Liapis, G. N. Yannakakis and J. Togelius: Constrained 
Novelty Search: A Study on Game Content Generation, 
Evolutionary Computation 21(1), 2015, pp. 101-129.



Constrained Novelty Search

A. Liapis, G. N. Yannakakis and J. Togelius: Constrained Novelty Search: A Study on Game Content Generation, 
Evolutionary Computation 21(1), 2015, pp. 101-129.



 Feasible-Infeasible Surprise Search:

 Feasible pop.: maximize surprise score

 Predictions made only from feasible individuals

Constrained Surprise Search

D. Gravina, A. Liapis and G. N. Yannakakis: Constrained Surprise Search for Content Generation. 
In Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG), 2016.



 As in MAP-Elites, create a feature map

 Each cell holds a best feasible individual 
and a best infeasible individual

 Treat as two populations:

 One selects parents from feasible cells

 Other selects parents from infeasible cells

Constrained MAP Elites

A. Khalifa, S. Lee, A. Nealen, and J. Togelius, Talakat: Bullet hellgeneration through constrained MAP-Elites, 
in Proceedings of The Genetic and Evolutionary Computation Conference. ACM, 2018, pp.1047–1054.



Core Domains of 
CC via evolution



 Representational paintings

 Music

 Mathematical concepts 

 Stories 

 Jokes 

 Poems

 Collages

 Games

CC domains

Krzeczkowska, A., El-Hage J., Colton S, and Clark S: Automated Collage Generation – With Intent, Proc. of the ICCC 2010
Colton, S., Goodwin, J., & Veale, T. Full-FACE Poetry Generation. Proc. of the ICCC 2012.
Graeme Ritchie: “Some empirical criteria for attributing creativity to a computer program”. Minds and Machines 17:76–99. 2007



 Problems usually have one solution.

 Objective functions may lead away from solutions.

 Stepping stones towards the solution are unknown.

Creative Problem Solving

J. Lehman, K.O. Stanley. Abandoning objectives: Evolution through the 
search for novelty alone. Evolutionary computation 19 (2), 189-223. 2011.

 Creative solutions (novel, 
surprising) may be more 
useful in the long run than 
‘better’ ones.



 Robot controller: 4 goal sensors, 6 collision sensors

 ANN evolved via NEAT to decide on turning & speed

Problem: Maze Navigation

J. Lehman, K.O. Stanley. Abandoning objectives: Evolution through the 
search for novelty alone. Evolutionary computation 19 (2), 189-223. 2011.

 Solution: goal reached

 Quality: ???

 Diversity: distance between 
final positions after simulation



 Novelty search with local competition:

 Novelty: pairwise distance of points along robots’ trails

 Local competition: # individuals further to final goal

Problem: Maze Navigation

J. K. Pugh, L. B. Soros, and K. O. Stanley, Quality diversity: A new frontier 
for evolutionary computation, Frontiers in Robotics and AI, vol. 3, 2016



 Surprise Search:

 k-means clustering of robots’ final positions

 Predicted positions via linear interpolation

Problem: Maze Navigation

D. Gravina, A. Liapis and G. N. Yannakakis: Quality Diversity Through Surprise, in Transactions on Evolutionary Computation, 2019.



Problem: Maze Navigation

Quality Novelty Surprise

D. Gravina, A. Liapis and G.N. Yannakakis: "Surprise Search: Beyond Objectives and Novelty," 
in Proceedings of the Genetic and Evolutionary Computation Conference. ACM, 2016.



 Surprise Search + Novelty Search + Local Competition

 NSGA-II two- or three-objective optimization

 Novelty + Surprise as linear combination or two objectives

Problem: Maze Navigation

D. Gravina, A. Liapis and G. N. Yannakakis: Quality Diversity Through Surprise, in Transactions on Evolutionary Computation, 2019.



 Curiosity Search with an intra-life novelty score

 Number of distinct behaviors exhibited in one simulation

 For mazes: # unique grid tiles touched + # doors opened

Problem: Maze Navigation

C. Stanton, J. Clune: Curiosity Search: Producing Generalists by Encouraging Individuals to Continually Explore 
and Acquire Skills throughout Their Lifetime. PLoS ONE 11(9): e0162235. doi:10.1371/journal.pone.0162235



 Soft robots with voxel-based materials

 4 types: active (contract or expand), inactive (soft or stiff)

 CPPN decides material, if any

Problem: Virtual Creatures

G. Methenitis, D. Hennes, D. Izzo, and A. Visser. 2015. Novelty search for soft robotic space exploration. 
In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. ACM, 193–200



Cheney N, MacCurdy R, Clune J, Lipson H (2013) Unshackling evolution: Evolving soft robots with multiple materials 
and a powerful generative encoding. Proceedings of the Genetic and Evolutionary Computation Conference. 167-174. 

Problem: Virtual Creatures



 Quality: distance from start to end position after sim

 Novelty: distance of points along robots’ trails

 Trail is rotation-invariant and z-axis flattened.

Problem: Virtual Creatures

D. Gravina, A. Liapis and G. N. Yannakakis: "Fusing Novelty and Surprise for Evolving Robot Morphologies," in 
Proceedings of the Genetic and Evolutionary Computation Conference, 2018.



 MAP-Elites: feature map of 128x128

 Features: % of stiff voxels, % of filled voxels

Problem: Virtual Creatures

J-B. Mouret and J. Clune. 2015. Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909 (2015).



 Surprise search:

 K-means clustering of trails

 Predicted trails via linear 
interpolation

 Deviation as distance along 
robots’ trails

Problem: Virtual Creatures

D. Gravina, A. Liapis and G. N. Yannakakis: "Fusing Novelty and Surprise for Evolving Robot Morphologies," 
in Proceedings of the Genetic and Evolutionary Computation Conference, 2018.



Problem: Virtual Creatures

D. Gravina, A. Liapis and G. N. Yannakakis: "Exploring Divergence for Soft Robot Evolution," 
in Proceedings of the Genetic and Evolutionary Computation Conference, 2017.



Problem: Virtual Creatures

D. Gravina, A. Liapis and G. N. Yannakakis: "Fusing Novelty and Surprise for Evolving Robot Morphologies," 
in Proceedings of the Genetic and Evolutionary Computation Conference, 2018.



 MAP-Elites with parent selection 
based on novelty or surprise:

 Space partition based on voxels

 Distance characterization based  
on trails (real or predicted)

 Come see the poster!

Problem: Virtual Creatures

D. Gravina, A. Liapis and G. N. Yannakakis: "Blending Notions of Diversity for MAP-Elites," 
in Proceedings of the Genetic and Evolutionary Computation Conference, 2019



 Innovation engines via MAP-Elites:

 Space partitioned via DNN-based 
object recognition (1000 classes).

 Quality based on respective 
confidence of detected object.

Computational Artworks

Nguyen, A.; Yosinski, J.; and Clune, J. 2015. Innovation engines: Automated creativity and improved stochastic 
optimization via deep learning. In Proceedings of the Genetic and Evolutionary Computation Conference.



Computational Artworks

Nguyen, A.; Yosinski, J.; and Clune, J. 2015. Innovation engines: Automated creativity and improved stochastic 
optimization via deep learning. In Proceedings of the Genetic and Evolutionary Computation Conference.



 MAP-Elites for 3D models:

 3D model created by evolved 
CPPN, rendered in 6 
perspectives.

 Cell is a category detected via 
ImageNet, made abstract via 
Wordnet hypernyms.

 MAP-Elites selects 
stochastically, but penalized 
if unproductive.

Computational Artworks

J. Lehman, S. Risi, J. Clune: “Creative Generation of 3D Objects with Deep Learning and Innovation Engines," 
in Proceedings of the Seventh International Conference on Computational Creativity, June 2016



Computational Artworks

J. Lehman, S. Risi, J. Clune: “Creative Generation of 3D Objects with Deep Learning and Innovation Engines," 
in Proceedings of the Seventh International Conference on Computational Creativity, June 2016



Creativity in Games
(with Evolution)



 Games require large amounts of human creativity

Digital GamesGames rely on creativity

A. Liapis, G. N. Yannakakis and J. Togelius: Computational Game Creativity, in Proc. of the Intl. Conf. on Computational Creativity, 2014.



 Games fall into a large class (possibly with 
subclasses, e.g. casual, shooter, RPG)

 this class has somewhat fuzzy boundaries.

 this class has extensive human-based 
evaluations of quality.

Games as a creative domain

A. Liapis, G. N. Yannakakis and J. Togelius: Computational Game Creativity, in Proc. of the Intl. Conf. on Computational Creativity, 2014.



 PCG is a commercial necessity.

 fast development cycles, replayability, retention.

 The game industry proudly displays its CC.

Games rely on procedural creation

A. Liapis, G. N. Yannakakis and J. Togelius: Computational Game Creativity, in Proc. of the Intl. Conf. on Computational Creativity, 2014.



 Search-based Procedural Content Generation

 Testing and improving content iteratively

 Unlike constructive or generate-and-test methods

Evolution in Content Generation

Togelius, J.; Yannakakis, G.; Stanley, K.; and Browne, C. 
2011. Search-based procedural content generation: A 
taxonomy and survey. IEEE Trans. on Computational 
Intelligence and AI in Games 3(3):172-186.



 Premise: game content usually has hard 
playability requirements, but also must 
provide replayability (and avoid repetition)

 Game content must be:

 Good (playable, balanced, etc.)

 Diverse (inspire new gameplay) 

PCG is a Quality-Diversity Problem

D. Gravina, A. Khalifa, A. Liapis, J. Togelius and G. N. Yannakakis: Procedural Content 
Generation through Quality-Diversity, in Proceedings of the IEEE Conference on Games, 2019.



 Divergence Components:

 Behavior Space Distance

 Behavior Space Partitioning

 Quality Components:

 Local Competition

 Constraints

Dimensions of PCG-QD

D. Gravina, A. Khalifa, A. Liapis, J. Togelius and G. N. Yannakakis: Procedural Content 
Generation through Quality-Diversity, in Proceedings of the IEEE Conference on Games, 2019.



 Generative Efficiency: one run, many good results 
(diverse from each other)

 Fitness-Free Search: exploring more than one 
dimension of interest

 Online Expressivity Analysis

 Human-Machine Co-Creation

 Explainability

Benefits of PCG-QD

D. Gravina, A. Khalifa, A. Liapis, J. Togelius and G. N. Yannakakis: Procedural 
Content Generation through Quality-Diversity, in Proc. of the IEEE Conference on 
Games, 2019.
G. Smith, J. Whitehead: Analyzing the Expressive Range of a Level Generator, in 
Proc. of the FDG Workshop on Procedural Content Generation in Games, 2010
J. Zhu, A. Liapis, S. Risi, R. Bidarra and G. M. Youngblood: Explainable AI for 
Designers: A Human-Centered Perspective on Mixed-Initiative Co-Creation, in 
Proc. of the IEEE Conference on Computational Intelligence and Games, 2018.



Instances of PCG-QD

D. Gravina, A. Khalifa, A. Liapis, J. Togelius and G. N. Yannakakis: Procedural Content 
Generation through Quality-Diversity, in Proceedings of the IEEE Conference on Games, 2019.



Spaceship Generation

A. Liapis, “Exploring the visual styles of arcade game assets,” in Proceedings of Evolutionary 
and Biologically Inspired Music, Sound,Art and Design (EvoMusArt). Springer, 2016

 Generated spaceships via turtle 
commands

 Mutations add/remove commands

 Quality: 5 plausibility constraints



Spaceship Generation

A. Liapis, “Exploring the visual styles of arcade game assets,” in Proceedings of Evolutionary 
and Biologically Inspired Music, Sound,Art and Design (EvoMusArt). Springer, 2016

 Diversity: 7 visual 
properties

 FINS to maximize 
distance on 3 or all 
visual dimensions



DeLeNoX Spaceship Generation

A. Liapis, H. P. Martınez, J. Togelius, and G. N. Yannakakis, “Transforming exploratory creativity with DeLeNoX,.” in ICCC, 2013, pp. 56–63.

 Spaceship hull generation (line overlap)

 Points evolved via CPPN

 Quality: two plausibility constraints



DeLeNoX Spaceship Generation

A. Liapis, H. P. Martınez, J. Togelius, and G. N. Yannakakis, 
Transforming exploratory creativity with DeLeNoX, in ICCC, 2013

 Novelty: distance based 
on latent representation

 Autoencoder trained on 
all results of 100 evol. runs

 New evol. runs based on 
vector distance in hidden 
nodes of autoencoder

 Re-train autoencoder on 
new results, repeat.



DeLeNoX Spaceship Generation

A. Liapis, H. P. Martınez, J. Togelius, and G. N. Yannakakis, “Transforming exploratory creativity with DeLeNoX,.” in ICCC, 2013, pp. 56–63.



Novel Suggestions for Designers

A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient sketchbook: Computer-aided game level authoring,” 
in Proceedings of the 8th Conference on the Foundations of Digital Games, 2013, pp. 213–220.

 Sentient Sketchbook: CAD tool for level design, 
with real-time alternatives generated by the 
computer (inspired by human user)

 Low-fidelity map sketches

 Constraints:
 Number of 'special' tiles

 All 'special' tiles must be 
reachable from one another

http://sentientsketchbook.com

http://sentientsketchbook.com/


Novel Suggestions for Designers



Novel Suggestions for Designers

A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient sketchbook: Computer-aided game level authoring,” 
in Proceedings of the 8th Conference on the Foundations of Digital Games, 2013, pp. 213–220.

 Genetic algorithms running 
multiple threads.

 Initial population seeded from 
the user's sketch.

 Two-population constrained 
evolution ensures playable results.

 Quality: different path operations

 Novelty: tile-to-tile similarity
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Minecraft Structure Generation

J. K. Pugh, L. B. Soros, R. Frota, K. Negy and K. O. Stanley, “Major Evolutionary Transitions in the Voxelbuild Virtual Sandbox 
Game”, in Proceedings of the European Conference on Artificial Life. 2017. 

 Minecraft structures created by agents

 Agents controlled by evolved ANN

 Input: 11x11 blocks around agent (block, boundary, empty)

 Output: 6 actions (move, add block, remove block)



Minecraft Structure Generation

J. K. Pugh, L. B. Soros, R. Frota, K. Negy and K. O. Stanley, “Major Evolutionary Transitions in the Voxelbuild Virtual Sandbox 
Game”, in Proceedings of the European Conference on Artificial Life. 2017. 

 Neuroevolution guided by NS-LC:

 Quality: larger and taller structures (blocks * max. height)

 Diversity: voxel-by-voxel similarity



Surprising Weapon Generation

D. Gravina, A. Liapis, and G. N. Yannakakis, “Constrained surprise search for content generation,” 
in Proceedings of the IEEE Conference on Computational Intelligence and Games. IEEE, 2016.

 Evolving pairs of weapons for a one-versus-one 
match in an Unreal Tournament 3 map.

 22 parameters (11 per weapon), e.g. bullet speed

 Constraints via simulation:

 Effectiveness (kills achieved)

 Safety (harm to wielder)

 Balance (entropy of kills)



Surprising Weapon Generation

D. Gravina, A. Liapis, and G. N. Yannakakis, “Constrained surprise search for content generation,” 
in Proceedings of the IEEE Conference on Computational Intelligence and Games. IEEE, 2016.

 Surprise: computed on death location heatmaps
aggregated from the entire feasible population.

 Predicting next heatmap of death locations.



Surprising Weapon Generation

D. Gravina, A. Liapis, and G. N. Yannakakis, “Constrained surprise search for content generation,” 
in Proceedings of the IEEE Conference on Computational Intelligence and Games. IEEE, 2016.



Coding Shoot’em’up Scripts

A. Khalifa, S. Lee, A. Nealen, and J. Togelius, “Talakat: Bullet hell generation through constrained MAP-
Elites,” in Proc. of The Genetic and Evolutionary Computation Conference. ACM, 2018, pp.1047–1054

 Shoot-em-up script for placing enemy or bullet 
spawners, evolved via Constrained MAP Elites

 Chromosome: 11 arrays of 23 integers each mapped 
to the custom Talakat script

 Constraints via simulation:

 # spawners below a max value.

 At least 10 bullets in more than 
50% of frames.



Coding Shoot’em’up Scripts

 Quality following simulated A* playthrough:

 Progress: # frames survived

 Lose: if player has died

 Safety: # frames a stationary agent would survive

 Future location: distance from fewest bullets 

 Space Partition following simulated A* playthrough:

 Entropy: # times player changed direction

 Risk: # bullets near player

 Distribution: amount of space occupied by bullets
A. Khalifa, S. Lee, A. Nealen, and J. Togelius, “Talakat: Bullet hell generation through constrained MAP-Elites,” 
in Proc. of The Genetic and Evolutionary Computation Conference. ACM, 2018, pp.1047–1054



Coding Shoot’em’up Scripts

A. Khalifa, S. Lee, A. Nealen, and J. Togelius, “Talakat: Bullet hell generation through constrained MAP-Elites,” 
in Proc. of The Genetic and Evolutionary Computation Conference. ACM, 2018, pp.1047–1054



Novel Mechanics for Mario Levels

A. Khalifa, M. C. Green, G. Barros, and J. Togelius, Intentional computational level design, 
in Proceedings of The Genetic and Evolutionary Computation Conference. ACM, 2019

 “Scenes” (level fragments) for Super Mario Bros. 

 Representation: 14 + 3 + 3 floor slices (premade)



Novel Mechanics for Mario Levels

A. Khalifa, M. C. Green, G. Barros, and J. Togelius, Intentional computational level design, 
in Proceedings of The Genetic and Evolutionary Computation Conference. ACM, 2019

 Simulations with “perfect” (A*) and “limited” agent

 Constraints: same 
performance between 
perfect & limited agents

 Quality: simplicity 
(entropy of tiles in a scene)

 Diversity: mechanics used



Novel Mechanics for Mario Levels

A. Khalifa, M. C. Green, G. Barros, and J. Togelius, Intentional computational level design, 
in Proceedings of The Genetic and Evolutionary Computation Conference. ACM, 2019

Speed Punishing Model Shell Kill Punishing Model Coin Punishing Model

 “Limited” agent may also punish certain mechanics



Novel Mechanics for Mario Levels

A. Khalifa, M. C. Green, G. Barros, and J. Togelius, Intentional computational level design, 
in Proceedings of The Genetic and Evolutionary Computation Conference. ACM, 2019

0 Mechanics 100 Mechanics



Diverse Mana Use in Hearthstone

M. C. Fontaine, S. Lee, L. B. Soros, F. D. M. Silva, J. Togelius, and A. K. Hoover, “Mapping hearthstone deck spaces with MAP-Elites 
with sliding boundaries,” in Proceedings of The Genetic and Evolutionary Computation Conference. ACM, 2019.

 Generating decks for Hearthstone

 Mutation by replacing cards from starter and 
classic decks, resulting in valid decks.

 Quality: average difference in health after 200 
games against opponent*



Diverse Mana Use in Hearthstone

M. C. Fontaine, S. Lee, L. B. Soros, F. D. M. Silva, J. Togelius, and A. K. Hoover, “Mapping 
hearthstone deck spaces with MAP-Elites with sliding boundaries,” in Proceedings of 
The Genetic and Evolutionary Computation Conference. ACM, 2019.

 Space Partition:

 Average mana cost of 30 cards in deck

 Deviation in mana use of 30 cards

 MAP-Elites with Sliding Βoundaries:

 boundaries placed uniformly at 
percentage marks of the distribution

 boundaries re-calculated every 100 
individuals



Instances of PCG-QD

D. Gravina, A. Khalifa, A. Liapis, J. Togelius and G. N. Yannakakis: Procedural Content 
Generation through Quality-Diversity, in Proceedings of the IEEE Conference on Games, 2019.



Beyond Game Content Generation

A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. Montezuma’s Revenge Solved by Go-Explore, a New 
Algorithm for Hard-Exploration Problems (Sets Records on Pitfall, Too). 2018. https://eng.uber.com/go-explore/

 Example of QD for agents that play games:

 Go-Explore: enhanced QD based on MAP-Elites

 States represented as low-res screen captures + metadata

 Exploration done randomly, 
adds/updates states

 Robustification via ANN 
and imitation learning to 
maximize score



Beyond Game Content Generation

A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. Montezuma’s Revenge Solved by Go-Explore, a New 
Algorithm for Hard-Exploration Problems (Sets Records on Pitfall, Too). 2018. https://eng.uber.com/go-explore/



Next Steps



 Orchestrating multiple facets: how to assess value 
when audio, visuals, plot, (rules? levels?) all 
contribute to the same artifact?

 Deep learning to drive novelty, surprise, and 
diversity? And from which data sources?

 Human creativity back in the loop: interfacing & 
explaining EC/ML approaches.

Future challenges

A. Liapis, G. N. Yannakakis, M. J. Nelson, M. Preuss and R. Bidarra: "Orchestrating Game Generation," 
in Transactions on Games, vol. 11, no 1, pp. 48-68, 2019.



 Mathematical models of surprise are one thing…

Emotion as a driver for CC

 Can we drive EC on 
computational 
models of surprise, 
joy, arousal that 
match human 
notions (e.g. from 
crowdsourcing?) 

D. Melhart, A. Liapis, G. N. Yannakakis: PAGAN: Video Affect Annotation Made Easy. In Proc. of 
the 8th International Conference on Affective Computing andIntelligent Interaction (ACII), 2019.



 Computational Creativity is (and has been) an 
ideal application for evolutionary computation.

 Creativity hinges on transformation, reframing, 
surprise, novelty, typicality, and quality.

 EC methods that promote such properties are 
ideal candidates (QD, novelty/surprise search)

 Game content generation is especially suited for 
this as it has playability constraints & quality and 
structural/gameplay diversity concerns too.

Parting words



Thank you!


