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Abstract—Assessing the believability of agents, characters
and simulated actors is a core challenge for human computer
interaction. While numerous approaches are suggested in the
literature, they are all limited to discrete and low-granularity
representations of believable behavior. In this paper we view
believability, for the first time, as a time-continuous phenomenon
and we explore the suitability of two different affect annotation
schemes for its assessment. In particular, we study the degree
to which we can predict character believability in a continuous
fashion through a two-player game study. The game features var-
ious opponent behaviors that are assessed for their believability
by 89 participants that played the game and then annotated their
recorded playthrough. Random forest models are then trained to
predict believability based on ad-hoc designed in-game features.
Results suggest that a discrete annotation method leads to a more
robust assessment of the ground truth and subsequently better
modelling performance. Our best models are able to predict
a change in perceived believability with a 72.5% accuracy on
average (up to 90% in the best cases) in a time-continuous
manner.

Index Terms—Believability, Human-Like Agents, Preference
Learning, Time-Continuous Annotation, Digital Games

I. INTRODUCTION

The study of believable agents defines a core aim of affec-
tive studies and human-computer interaction at large. Not only
can believable agents improve the realism of the interaction,
but they can be used for human-like automatic testing [1],
compete in a game like humans would do [2], [3], collaborate
for solving a task [4], or guide humans through a process
that may include anything from visiting a (virtual) museum
all the way to a virtual therapy session. The believability of
such agents is generally defined in terms of their behavior [5]
and is predominately associated with “human-like” decisions,
manifestations or expressions.

Digital games and simulated environments that feature
agents are a natural testbed for studying agent believability.
Within such environments one can distinguish two types of
agent believability: user (or player) believability and character
(or non-player) believability [5]. The former refers to the illu-
sion that a human player is controlling the agent, rather than
a computer, while the latter is applied to a fully autonomous
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Fig. 1: Moment-to-moment believability annotation with dis-
crete binary labels (BTrace) through PAGAN.

agent which acts in a believable way to a human observer. In
this study we focus on character believability in the domain
of digital games.

Games put an emphasis on human-like game-playing agents,
either to compete or cooperate with human players [6]. The
most prominent approach for assessing believability is the
adaptation of Turing Tests [7] for non-player behaviour as-
sessment [5], [8]. However, these tests lack an established
protocol and rely on an overall representation of believability.
This overall representation does not always take context into
account [5], [9] nor does it allow for a direct comparison
between existing studies [10].

To address limitations in believability assessment, in this
paper we transfer key methods and principles of affective
computing to modelling believability in a continuous manner.
We assume that features of the gameplay interaction can form
efficient predictors of character believability and we test our
hypothesis on an asymmetric top-down shooter game that
features various non-player character behaviors [11]. We asked
89 participants to play this game and assess the believability
of their opponents in a first-person annotation manner (see
Figure 1). To label believability, we compare two different



time-continuous annotation tools featured in the PAGAN an-
notation framework [12]: a discrete binary tool named BTrace
inspired by AffectRank [13] and the continuous unbounded
RankTrace [14]. We use preference learning via Random
Forests (RFs) to investigate the robustness of models based
on data collected through these two methods. Our BTrace
models reach an average 72.5% accuracy (90% accuracy
on the best folds) and our RankTrace models reach 68%
accuracy on average (94% on the best folds). Subsequent
analysis reveals that BTrace is ultimately more robust for time-
continuous believability annotation. The core novelty of this
study is that it approaches the assessment and modeling of
character believability in a time-continuous manner. Although
a continuous representation of believability has been proposed
[5], to the best of our knowledge it has been untested until now.
Finally, we introduce a new performance measure—7@Qk—
which brings the statistical properties of Kendall’s tau [15]
to the precision at k (pQk) metric [16], [17]. p@k is used
in affective computing to test the comparative robustness of
different algorithms. With 7@k, we aim to measure the point-
wise prediction performance of preference learning models
trained on different believability metrics in a fair manner.

II. BACKGROUND

This section reviews research related to models of simu-
lated agents’ emotion, believability of computer agents and
their evaluation, and concludes with a discussion on relevant
annotation protocols we can adopt from affective computing.

A. Modelling and Simulating Agent Emotion

Research into simulated emotions often relies on computer
models based on appraisal theory [18], [19]. Appraisal theory
explains emotion manifestation as a “subjective appraisal of an
antecedent event” [20]. Over the years, several different frame-
works have been developed to model affective processes with
the goal of producing believable emotional expressions and aid
the regulation of simulated behaviours. Most of these models
are explicitly or implicitly based on the Ortony—Clore—Collins
(OCC) model, which describes emotion manifestation as func-
tion of event appraisal in light of the performed action, its
consequences, and the environmental context [21]. An early
example of computational models taking advantage of OCC
is the EMotion and Adaptation (EMA) framework, which
models appraisal as a uniform but temporally causal process,
accounting for both emotion manifestation and its impact on
future behaviour [22]. In contrast, the Fearnot AffecTlve Mind
Architecture (FAtiMA) system simulates emotions through a
two-tier system comprised of a reactive (based on immediate
events) and a deliberative (based on the future likelihood of
success) component [18].

While these studies are focusing on modelling the cognitive
process of emotion regulation, much less attention has been
given to simulation of behavioural manifestations of emotion.
One previous example of this research is the study of Melhart
et al. [11] on players’ emotional theory of mind [23] of

abstract agents. In this experiment, the authors created a top-
down shooter game—MAZING—with an adversarial agent.
The agent was designed to simulate an increasingly frustrated
behaviour towards the player and measured whether the play-
ers could notice this behavioural change. Instead of the OCC
model, MAZING simulates the agent’s behaviour based on
the theory of Computer Frustration [24]. According to this
theory, frustration is a reaction to a lack of anticipated change
(unmet goals). As frustration often manifests as non-specific
arousal, it initially increases the focus on the task at hand by
limiting peripheral cognitive processes but eventually leads to
performance dysfunction by overloading the information pro-
cessing system [11], [24]. MAZING is designed to simulate this
bell-curve-like function of incident level (moment-to-moment)
frustration. While the agent in the game is not human-like
in appearance, the game uses exaggerated behavioural and
visual cues to aid emotion recognition [25]. The results of
[11] highlighted the importance of the game context in the
evaluation of emotional behaviour of computer agents. In this
study we also use MAZING as our testbed game (see Section
1I-A).

B. Believability

While the concept of believability is often intuitively un-
derstood as something “human-like”, the precise definition
remains highly dependent on the context [25]. Early definitions
describe the phenomenon as a suspension of disbelief [26]
with the exact feeling of believability lying in the eye of
the beholder. Bates notes the illusory nature of believability
[26], where an observer unconsciously interprets the behaviour
of a computer agent as human-like cognition as long as the
agent does not actively try to destroy the illusion. Similarly,
Loyall describes believability as an “illusion of life”” which is
highly dependent on the observers’ expectations [27]. While
these early examples offer more broad definitions attempting
to capture the feeling of believability, later studies attempt to
specify and categorise different aspects of the phenomenon.

Riedl and Young introduce a more objective way to as-
sess intentionality—the feeling of an agent acting naturally
and/or rationally—which they identify as a core component
of believability [28]. Tence er al. define a balance between
predictability and randomness, as well as exaggeration of
behaviour, as facilitators of believability [25]. Tence et al.
also note that perfectly human-like behaviour can seem less
believable as nuances are lost in transmission [25].

Meanwhile, the field of game Al research discerns between
player believability and character believability [S5], [29], as
discussed in Section I. In this paper, we are concerned with
the latter, as the opponent in MAZING has different abilities
and goals than the human player. Lankoski and Bjork provide
an overview of human-like believable Non-Player Characters
(NPC) [30]. In their work, they define an NPC as believable if
it is embodied, self-aware, has self-stated intentions, expresses
emotions, has the ability to use natural language, and has
persistent traits (i.e. maintaining a certain consistency without
being overtly repetitive). While some of these criteria are



debatable—e.g. not all NPCs would necessarily need to use
natural language—intentionality, consistency, and expressive-
ness are common aspects across all definitions [25], [28], [30].

C. Believability Evaluation

Despite several attempts to establish a normative standard
for believability evaluation based both on generated criteria
[31] and subjective assessment [8], [29], the majority of studies
still use ad-hoc protocols. This poses a major limitation to the
field. Finding normative protocols for believability assessment
is important; while the common belief is that an agent’s
believability depends only on the AI that controls it [32],
this is far from being true. In particular, Camilleri er al.
showed that changing an agent’s environment affects their
perceived believability levels [33]. In their study the authors
asked players to annotate the believability of a platform game
play-through. Their results highlighted that the assessment was
highly dependent on the configuration of different levels (i.e.
number of enemies, number of gaps, placement of both and
many others). Similarly, Pacheco et al. showed how changing
multiple factors beyond the Al behaviour (such as game target
audience, camera perspective, player experience, length of
videos, etc.) can change the outcome of the assessment [10].

Most studies are using an evaluation method based on Tur-
ing Tests [9], opting for a high-level state-like representation
of believability assigned to a whole gameplay session [5], [8]-
[10]. While these methods address some of the research gaps
in the field, they remain limited in a number of ways. Firstly,
the vagueness of terms such as “believable” and ‘“human-
like” leaves much room for human bias during the evaluation.
Both Togelius et al. [5] and Pacheco et al. [10] highlight this
limitation, showing that assessment through Turing Tests is
a highly reflexive process. Subsequently, participants perceive
believability differently—with each participant having a differ-
ent internalized definition of what “believable” is. Secondly,
the diverse set of parameters used by different studies and
competitions lead to results which are not directly comparable
[9], [10]; this points to a need for standardized methods
in believability assessment. Finally, the low granularity of
Turing Tests means that the method can only be used for
high-level quality evaluation of agents, but not in low-level,
continuous predictions. We propose to address this challenge
by increasing the granularity of the evaluation and observing
how the perception of believability changes from moment to
moment, thus accounting for the ambiguous dynamics of the
phenomenon [5].

D. Time-Continuous Affect Annotation

Similarly to believability, affective states are fuzzy concepts
which are often represented as continuous dimensions such as
pleasure, arousal, and dominance [34]. Additionally, affective
computing applications have been focusing on modelling
changes in emotional states in a time-continuous manner [35]
and several annotation tools have been developed for this
purpose [12], [36]. While continuous annotation techniques
are better equipped to capture the temporal dynamics of a

Fig. 2: Screenshot from MAZING. The blue dot is the player,
the red dot is the computer agent. The light grey area shows
the player field-of-vision. The image shows both player attack
modes (yellow projectiles and a fire) in the middle and an
extinguishing fire in the top right corner.

certain experience [35], discrete (or discretised) labels can
often reduce noise and increase inter-rater agreement [13].
A recent study by Melhart et al. [12] revealed that while
discrete labels yield higher degrees of inter-rater agreement,
some continuous annotation tools, such as RankTrace [14] are
more intuitive to use.

In this paper we adopt dominant paradigms of time-
continuous affect annotation and we attempt to model char-
acter believability using both discrete traces via BTrace [12]
and continuous traces via RankTrace [12], [14].

III. BELIEVABILITY USER STUDY PROTOCOL

In order to model character believability in games in a
continuous manner, we conducted an online user study where
participants first played a game against an artificial agent and
then annotated the believability of the agent while watching
a recording of their interaction. This section provides some
details of the game used as elicitor for believability annotation
(Section III-A), the protocol for data collection (Section III-B),
and the way that data was processed to derive ordinal relation-
ships in order to build computational models of believability
(Section III-C).

A. Testbed Game: MAZING

MAZING is a top-down shooter game taking place in a
maze. The goal of the player is to score points by damaging
and killing a computer-controlled enemy agent. The agent
reacts to the player and tries to catch them. If it collides with
the player, the player dies and the game resets. A player has
two options to attack: shooting fast projectiles or hurling a
slower bomb which explodes into a fire that lingers on the
playing field for a short period of time (see Figure 2). A
player has a limited field-of-vision, obstructed by the walls
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Fig. 3: PAGAN data collection interfaces used for the experi-
ments.

of the maze. MAZING is an asymmetrical game, and the
enemy agent does not have the same abilities or statistics as
the player. The enemy agent moves faster than the player, but
does not have any special attacks. Instead, the enemy seeks or
chases the player in order to collide with them. If the player
is out of sight, the agent moves randomly through the level
seeking the player; if the player is in sight the agent chases
the player using the shortest path. The agent has two different
sensory systems: a narrow field-of-vision, and a probability-
based auditory system around the agent. While moving, the
agent may pass through fires if its health is high or if the
alternative path is much longer. The agents’ sensorimotor skills
and decision-making are affected by an abstract model of
Computer Frustration [24]; more frustrated agents will take
more risks, have a narrower but more precise sensory system,
and move faster but more erratically.

B. Data Collection Method and Processing

We collect annotation traces about believability through the
Platform for Audiovisual General-purpose ANnotation tool
(PAGAN) [12]. PAGAN was developed as an online tool for
the online collection of affect annotations. The framework was
modified to house the whole data collection pipeline in one
place. The MAZING game was integrated with PAGAN, allow-
ing participants to play the game online and then annotate their
last session. This is done in the least intrusive way possible
as the online interface of PAGAN handled the assignment of
play and annotation tasks automatically.

Participants were invited to play and annotate the believ-
ability of their opponent. Each player was assigned randomly
between the two annotation tools: BTrace, a binary discrete
annotation tool or RankTrace, an unbounded continuous an-
notation tool [12] (see Fig. 3). Regardless of annotation type,
participants were asked to play and annotate two consecutive
one-minute sessions. Before their recorded play, participants
had the chance to test the controls of the game. The agents
that players faced have different emotion expression capacities
which were randomly assigned, based on different frustration
levels (see Section III-A). After their play-session, a video
replay was shown to the players and they were asked to label

their opponent’s gameplay in terms of believability. Before an-
notating, participants were informed that “believability means
your opponent is playing like a human would in the situation”.
For each play and annotation sequence, the collected data
consists of telemetry of both player- and agent-related features
and the annotation trace (continuous or binary). A sample of
the telemetry data collected is included in Table II, and more
details can be found in [11]. The telemetry and the annotated
labels have to be resampled and aligned to each other. Game
telemetry is captured at a 4Hz rate; however the 250ms time
window is too small for modelling believability. Subsequently,
we discretise the dataset at a 3-second interval with 1 second
lag to account for annotator reaction time [37]. Consecutive 3-
second time-windows are calculated based on the mean value
of a given window. Finally, the features and the annotated
believability values were normalized on a per-session basis.
Additional steps are taken to clean the dataset of outliers.
Inspired by Makantasis et al. [38], the dataset is cleaned of
outliers using Dynamic Time Warping (DTW) distance [39].
While DTW can be used to calculate a warping path between
two time-series using a similarity matrix, it also provides a
similarity measure in the form of cumulative DTW distance.
Here, we use this metric to first measure the DTW distance
to an inactive baseline; that is a hypothetical annotator who
didn’t label their data (all annotations are zero). We discard
sessions which fall more than two standard deviations towards
zero from the mean distance of the dataset to the inactive
baseline. Then we calculate the cumulative DTW distance
for each session compared to every other session. The goal
is to identify atypical annotations and hence discard sessions
which fall more than two standard deviations away from the
mean cumulative distance of the dataset. Through this cleaning
process, we remove believability traces with insufficient data
and traces which deviated from the annotators’ consensus.

C. Modelling Process

We treat both the gameplay logs and the annotations of
believability in an ordinal fashion, and leverage preference
learning [40] to create models of believability. We follow
the extensive evidence that data treated and modelled in an
ordinal fashion leads to models which are more robust com-
pared to models constructed through a traditional classification
approach [36], [41], [42]. The dataset undergoes a pairwise
transformation of the dataset. Preference learning based on
this method transforms the dataset into a new representation,
which describes the relative relationship of data points and
leverages binary classification to solve the machine learning
task. Formally, during the pairwise transformation, for every
pair of data points (z;,z;) € X and corresponding label
(vi,y;) € Y we create two new data points and assign them
new preference labels. In case of y; >, y; (x; is preferred to
xj), we create ¢’ = x; — x; and 2" = x; — z; and assign
AN =1 and M’ = —1 labels to them. During the pairwise
comparison we use the e uncertainty threshold parameter to
reduce the noise in the data. Pairwise differences falling within
€ are discarded as not significant comparisons. As an added



TABLE I: Number of participants (Part.), sessions (Sess.) and
data points before and after two pre-processing treatments,
split based on annotation tool used.

RankTrace BTrace
[ Treatment Part. | Sess. | Data | Part. [ Sess. | Data
Raw 51 73 16101 38 64 14328
Preprocessed 27 40 801 24 43 860
DTW Cleaning 26 37 741 24 40 800

benefit, the baseline of the new dataset is always 50%. While
in some studies the pairwise transformation is applied between
every data point [43], here we apply it sequentially due to
the temporal aspect of the dataset. The resulting reformulated
dataset can be solved with any type of binary classifier.

After the new pairwise dataset is produced, we tackle the
binary classification of ranks with Random Forests (RF). RFs
are a type of ensemble machine learning model which consist
of a set of randomly initialised decision trees [44]. The meta
output of the RF is the mode of the trees’ predictions. RFs
are popular algorithms for the modelling of human data as
they are fast to train and proven to be very robust in affective
computing applications [45], [46]. In this experiment we use
the RF implementation of the Scikit-learn Python toolkit [47].
This implementation is based on an optimised Classification
And Regression Tree (CART) algorithm [48].

IV. RESULTS

Based on the protocol described in Section III, 89 in-
dividuals participated in the user study. Participants were
recruited among the authors’ contacts, following a mix of
purposive sampling (as participants had experience in digi-
tal games) and convenience sampling. The resulting dataset
contains gameplay telemetry from a total of 89 participants,
and believability annotation traces from 38 participants for
BTrace and 51 participants for RankTrace. During a first
preprocessing step, inactive annotators (i.e. those with fewer
than 10 annotations), incomplete, or unlabelled sessions are
removed. Through this process a total of 24 participants and
33 sessions are removed from RankTrace, and 14 participants
and 21 sessions from BTrace. After resampling the traces and
telemetry to 3 second windows (see Section III-B), we collect
a total of 801 datapoints for RankTrace and 860 datapoints
for BTrace. After applying the two processes for dynamic time
warping to remove outliers (see Section III-B), the final dataset
consists of 741 datapoints for RankTrace and 800 datapoints
for BTrace. All the details of the dataset during the different
cleanup phases are provided in Table I.

The following sections present the results of our analy-
sis and modelling efforts on the collected dataset. Section
IV-A discusses a correlation analysis between individual game
telemetry features and annotated believability, while Section
IV-B shows the results of predictive user modelling via prefer-
ence learning. Throughout this section significance is reported
via two-tailed Student’s ¢-tests at o = 0.05 and corrected with
the Bonferroni method where necessary.

TABLE II: Ten absolute highest Kendall 7 values between
individual features and the annotated believability via BTrace
and RankTrace. All correlations are significant at a = 0.05.
Labels show parameters that refer to the agent (A), the player
(P), or general (G); the latter include the user’s controller input.

BTrace RankTrace
Feature T Feature T
A | Agent Chasing 0.300 | A | Agent Chasing 0.194
P | Player in Sight 0.275 | P | Player Score 0.153
P | Player Idle Time -0.209 | G | Time Passed 0.133
A | Agent Movement 0.209 | P | Player in Sight 0.132
A | Agent-Payer Dist. | -0.198 | A | Agent-Payer Dist. | -0.130
G | Input Intensity 0.192 | A | Agent Movement 0.115
P | Player Score 0.187 | A | Agent’s x coord 0.104
G | Input Diversity 0.158 | A | Agent Health -0.098
G | Time Passed 0.152 | P | Player Idle Time -0.090
A | Agent Health -0.149 | G | Mouse = coord 0.082

A. Correlation Analysis

As a first step in our experimentation we use correlation
analysis to find potential linear relationships between the
perceived believability of the agent and individual game-
play telemetry features. In particular, we measure correla-
tion through Kendall’s rank correlation coefficient [49] (7).
Kendall’s 7 is a monotonic rank correlation measure which
offers high robustness against outliers; this property makes it
ideal for handling affect annotation data which is subjective
and noisy by nature. We compute the 7 values between all
55 in-game features and believability annotations retrieved via
both RankTrace and BTrace. Due to space constraints, Table II
shows only the 10 most significant correlations for each of the
annotation methods.

Overall BTrace yields more and stronger linear relationships
with in-game features. In particular, BTrace and RankTrace
annotation traces have significant correlations with 23 and 17
out of the 55 ad-hoc designed features, respectively. Between
the two annotation tools there are 14 common features that
are significantly correlated to annotated believability. Most of
these are related to the agent’s behaviour (8) followed by
general gameplay features (5), and finally features describing
the players’ behaviour (1). Specifically, the most believable
aspects of the agent seem to correspond to being engaged
in chasing the player, the distance travelled and whether the
player is being seen or not. A possible explanation for this is
that the more the agent sees and chases the player, the more
interactions and focused behaviour it displays. This is also
corroborated by the negative correlations between believability
and the player standing idle, the agent’s health, and the
distance between the agent and the player. These features
show that the more action happened on screen, the more
likely players interpreted the agent’s action as believable. This
finding is also aligned with theories in believability that link
it to expressivity and intentionality [25], [28].

The higher number of significant correlations and higher
absolute values of 7 coefficients between telemetry and BTrace
annotations suggest that this tool provides annotation traces
that are easier to predict through in-game contextual features
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in a linear fashion.

B. Preference Learning

This section discusses the results of believability modelling
through preference learning (PL). We present and compare
models based both on BTrace and RankTrace annotations. To
provide a fair analysis on model performance and the robust-
ness of the different annotation methods, we review the results
using two different tasks. First, we observe model performance
in terms of accuracy in a pairwise task. While performance on
this task can tell us about the robustness of the models—since
BTrace and RankTrace are using different measurements—a
direct comparison between their performance can be biased. To
remedy this, we introduce a point-wise prediction task using
a new metric inspired precision at k£ metric [16], [17].

1) Pairwise Prediction Accuracy: Figure 4 shows the per-
formance of our models on the pairwise prediction task. In this
task we measure the accuracy of the models when predicting
the more believable gameplay segment from two examples.
Through these experiments we also test model sensitivity to
the e parameter. As annotation data is normalised on a per-
session basis, an € value of 0.1 means that only data points
with a higher than 10% difference are considered during
pairwise transformation (see Section III-C). While there are
no significant differences between the two models across all
parameters, BTrace consistently outperforms RankTrace over
all e values tested. Given how BTrace generally retains more
data points when € is increased, it seems to be the more
robust approach to believability annotation. The best BTrace
model (with € = 0.2) achieves a 72.5% accuracy on average,
with a 90.1% accuracy on the best fold. In contrast, the best
RankTrace model (with € = 0.15) reaches 67.9% accuracy on
average, with 93.9% on the best fold.

2) Point-wise Prediction Performance: In this task, we re-
construct a global order of data points by taking the cumulative

—e— BTrace

—&— RankTrace

Kendall's ©

0.0

Fig. 5: Kendall’s 7@k comparison between BTrace and Rank-
Trace. The graph shows the average performance at ‘k’ over
all test sessions. Shaded areas show 95% confidence interval.

score of pairwise predictions in the test set. Similarly to
Melhart et al. [42], we use the decision function of the binary
preference learning task to retrieve a fine-grained cumulative
rank score. In this case, for every data point (x), we make a
comparison to every other data point (z’ € X), then simply
multiply the predicted class (1 if x is preferred, —1 if =’ is
not preferred) with the prediction probability of the class, and
sum these scores over all ' € X. The assumption of this
method is that the more comparisons a data point wins and
the more confident the system is in the given prediction, the
higher its rank score should be. We test the performance of
this global ordering by looking at the Kendall’s 7 correlation
with the raw ground truth labels using Kendall’s T at ‘k’.

Kendall’s T at k (TQFk) substitutes the precision metric
in precision at k (pQk) with Kendall’s 7 rank correlation.
Compared to p@Fk this metric provides a greater resolution
since it demonstrates the ways a model deviates from the
ground truth beyond a simple classification of ‘high’ and
‘low’ data points over a median value split. The core steps
of calculating 7@k are the same as p@k: for all possible
k, the top and bottom k/2 predictions are observed and the
Kendall’s 7 rank correlation with the underlying ground truth
is calculated. We calculate 7@k on a per-session basis (i.e.
20 time windows of 3 seconds each). For k equal to the size
of the dataset (20 in our case) we assess Kendall’s 7 on the
whole dataset, while for £ < N we ignore the ‘middle’ of the
dataset assuming that more extreme values manifest stronger
and therefore more reliable and relevant reactions.

Figure 5 shows the results of this analysis of the best
BTrace and RankTrace models. While at high k& values the
performance of the two tools overlaps without any significant
difference, if k if smaller than 8 (i.e. focusing on the most
extreme <40% of the session’s windows), BTrace yields
models that outperform models of RankTrace significantly



with respect to 7@k. This analysis shows the robustness of
BTrace over RankTrace, especially predicting the difference
between critically high and low moments of believability.

V. DISCUSSION

This paper presented a study on time-continuous character
believability assessment and modelling. We investigated two
annotation methods, discrete binary (BTrace) and continuous
unbounded (RankTrace) labelling to find which one of these
methods provides a more robust ground truth. To this end
we used a testbed game, which featured an agent that could
express different depths of behaviour, and collected gameplay
telemetry data from 89 participants along with different ground
truth annotations. Our correlation analysis of the collected
features showed that both methods provide several significant
correlations, including many in common to both. However,
BTrace has more significant linear relationships to the fea-
tures and in general these correlations are stronger than for
RankTrace. In particular, strong connections have been discov-
ered between believability and features describing the agent’s
behaviour or player inactivity. We also examined how robust
the ground truth acquired through BTrace and RankTrace can
be in a time-continuous player experience modelling task. We
used preference learning to create models which predict the
changes in the players’ perception of believability dynamically.
We examined the results from two perspectives, looking at
a pairwise prediction task and a predicted global order of
believability labels. Our results showed that BTrace labels are
more robust in both cases as well.

To our knowledge, this is the first foray into time-continuous
believability annotation methods and prediction. As a result,
there is no accepted accuracy baseline. However, another
contribution suggests that, within affective games, an accuracy
of 70-80% is acceptable [50]. Thus, the conclusion of the study
presented here supports discrete binary labelling for assessing
character believability. The superior robustness of this method
could be explained by the complexity of the term “believable”.
Instead of an emotional response, the subjective understanding
of the phenomenon is highly cognitive. The discrete labels
might help players reduce the noise and fuzziness that comes
with the cognitive evaluation of such complex term—making
BTrace a more intuitive tool to use in this scenario.

The presented study is still preliminary in nature. There
is still much to be done before we can achieve a normative
process of the time-continuous annotation and assessment of
believability. The generality of the method is suggested by
some of the findings (i.e. the strong correlation between be-
lievability and general gameplay features). This area could be
further investigated by looking at a more diverse set of games
and see whether the process generalises well. While the pre-
sented method provides rich data on how believability changes
with time, follow-up studies should investigate whether the
collected time-continuous data agrees with more traditional
Turing test-like methods. From the current results it is unclear
whether continuous believability annotation and Turing Tests
are comparable or provide complementary information. The

presented models take a simple approach, utilizing Random
Forests and hand-crafted game telemetry. Future studies could
explore different machine learning techniques including deep
neural networks and pixel-to-believability prediction, similar
to the use of gameplay pixels for arousal prediction [51].
In addition, we could revisit the results presented by this
paper and help triangulate our initial finding with the use of
physiological data.

Finally, the scope of this study could be expanded to
many different domains. One direction could be to leverage
the traces and trained models for agent design—not only
within video games but also virtual reality or human-computer
interaction. The feature analysis of Table II could directly
inform a human designer to adapt the agent’s behavior towards
higher believability (e.g. enforcing a behavior that ensures
that an agent keeps a player in its sights longer). More
ambitiously, the believability predictions could act as rewards
for a reinforcement learning agent that aims to maximize
its believability potential. Another direction could focus on
the assessment itself, as the time-continuous annotation could
be applied to other areas such as assessing how “human-
like’ is a conversation with chatbots or Al virtual assistants.
With the right interface, such time-continuous annotation could
be possible when interacting with physical robots. A binary
annotation tool such as BTrace could easily be re-imagined
as a two-button physical controller through which users can
report believable (or non-believable) behaviors in real-time
during interaction with a physical robot.

VI. CONCLUSION

In this study of character believability assessment, we
introduce methods for time-continuous annotation for the first
time and we investigate two different methods to annotate per-
ceived believability of simulated behaviour in videogames. We
collect data from 89 participants and, through both correlation
analysis and machine learning techniques, we find the most
robust descriptors of moment-to-moment believability. Our
results show that a discrete binary annotation protocol provides
a stronger linear predictor and leads to better performing
predictive models as well. Our best models could predict a
change in perceived believability with a 72.5% accuracy on
average (up to 90% in the best of cases). The promising
results of this first study in time-continuous annotation of
believability can lead to a new way of assessing believability
in more diverse sets of games and videos, as well as modelling
believability based on moment-to-moment gameplay data and
other modalities such as game footage.
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