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Abstract—How can we model affect in a general fashion,
across dissimilar tasks, and to which degree are such general
representations of affect even possible? To address such questions
and enable research towards general affective computing, this
paper introduces The Arousal video Game AnnotatIoN (AGAIN)
dataset. AGAIN is a large-scale affective corpus that features over
1,100 in-game videos (with corresponding gameplay data) from
nine different games, which are annotated for arousal from 124
participants in a first-person continuous fashion. Even though
AGAIN is created for the purpose of investigating the generality
of affective computing across dissimilar tasks, affect modelling
can be studied within each of its 9 specific interactive games. To
the best of our knowledge AGAIN is the largest—over 37 hours
of annotated video and game logs—and most diverse publicly
available affective dataset based on games as interactive affect
elicitors.

I. INTRODUCTION

A core challenge of affective computing (AC) is the in-
vestigation of generality in the ways emotions are elicited
and manifested, in the annotation protocols designed, and
ultimately in the affect models created. To examine the degree
to which general representations of affect are possible and
meaningful, AC research requires access to corpora containing
affect responses and annotations across dissimilar tasks, par-
ticipants and annotators. Traditional large-scale AC datasets
feature affect annotation of static images, videos, sounds and
speech files within a narrow context through which affect is
elicited from a particular task. Even when the various tasks
under annotation may vary, those are still limited to a very
specific context—such as viewing a set of social interactions
under a theme or playing sessions of the same game.

This paper identifies games as a unique opportunity in AC
to observe emergent emotions in a well-defined but highly
interactive environment. Interactivity is especially important
for the future of AC research as emotions permeate our
daily interactions—not just with each other, but with our
environment and computers as well. Affective states arising
from these interactions impact our behaviour and decision
making on a fundamental level [1], [2]. Therefore, modelling
emotions that emerge from interactions is becoming paramount
to AC research.

Motivated by the lack of corpora for the study of general
properties of affect across tasks and participants, in this paper
we introduce The Arousal video Game AnnotatIoN (AGAIN)
dataset, which contains data from over 120 participants who
played and annotated over 1, 000 gameplay sessions. AGAIN

Figure 1. All games featured in the AGAIN dataset currently. The dataset
includes 3 racing games (top row), 3 shooter games (middle row), and three
platformers (bottom row).

is accessible online1 and features data collected from nine
games of three dissimilar genres, which were developed
specifically for the purposes of the dataset (see Fig. 1).
As shown in Table I, along with game telemetry and self-
annotated arousal labels, the dataset also features a video
database of unique gameplay sessions with over 37 hours
of in-game footage. The diverse nature of the AGAIN affect
elicitors (games) provides a testbed for general affect detection
in games [3], [4] and broadens the horizons for research
on general-purpose AI representations [5], [6] and artificial
general intelligence.

While AC datasets in general rely on collecting peripheral
physiological signals in laboratory settings, the AGAIN dataset
moves data collection to an online setting. On the one hand,
this setup only allows us to collect behavioural data in a
reliable way. However, since the tools and pipelines employed
to collect the dataset emphasise a simple crowdsourced setup,
the AGAIN database is much more flexible, extensible and
scalable. The design and creation of AGAIN was indeed
guided by the following factors: a) accessibility, which is
achieved through an online crowdsourcing framework; b)
scalability: AGAIN is utilising the PAGAN online annotation

1http://again.institutedigitalgames.com/
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Table I
CORE PROPERTIES OF THE AGAIN DATASET

Properties Raw dataset Clean dataset
Number of Participants 124 122
Number of Gameplay Videos 1116 995
Number of Game-telemetry Logs 1116 995
Video database size 37+ hours 33+ hours
Number of Elicitors 9 games (3 genres)
Gameplay/Video duration 2 min
Annotation Perspective First-person
Annotation Type Continuous unbounded
Affective Labels Arousal

framework [7] and, hence, one can easily populate the AGAIN
database with more participants and annotators; c) extensibil-
ity: more affect dimensions and categories can be considered
and integrated to the existing dataset through the customisable
PAGAN annotation tool; d) generality: any additional online
game or interactive session can be easily integrated to the
experimental protocol of AGAIN. While at the time of writing
the database hosts 9 games annotated for arousal, AGAIN is
designed with all aforementioned factors in mind so that it can
host data from more games and user modalities, considering
alternative affective labels.

The AGAIN dataset is unique in a number of ways. First,
it is the largest and most diverse publicly available affective
dataset based on games as interactive elicitors. Given the
breadth of elicitors offered, the dataset can be used for testing
specific affect models on one particular task (i.e. a particular
game) all the way to general models of affect across tasks
(game genres and games in general). Second, the dataset is
annotated with the core affective dimension of arousal, linking
dominant annotation practices in affective computing with
player modelling and game user research. Finally, it employs
a novel annotation framework [8] which captures subjective
annotations in a continuous and unbounded manner that can
be further processed as labels for regression, classification or
ordinal learning affect modelling tasks [9], [10].

The remainder of the paper is structured as follows. Section
II contextualises the dataset within the fields of affective
computing and affect modelling in games while Section III
offers a systematic review of existing audiovisual datasets. The
games used as the affect elicitors of AGAIN are described in
Section IV. Section V details the AGAIN dataset by describing
the protocol followed, the characteristics of the participants,
the data types collected, and the annotation framework used.
Section VI offers a detailed yet preliminary data analysis of the
dataset. Limitations and extensions of AGAIN are discussed
in Section VII and the paper concludes with Section VIII.

II. BACKGROUND

AGAIN is an accessible dataset offered for research in
affective computing at large and player modelling in particular.
This background section discusses the importance of arousal
within the field of affect representation (Section II-A) and
reviews studies for modelling the affect of game users (i.e.
players) in Section II-B.

A. Arousal as Affect Representation

While there are different approaches to affect representation
including categorical [11], [12], dimensional [13], and mixed
[14] frameworks, the AGAIN dataset uses a dimensional rep-
resentation based on the Pleasure-Arousal-Dominance (PAD)
model of affect [15] and the Circumplex Model of Emotions
[13]. In contrast to categorical frameworks, which assume
a clear division between emotional responses, these models
propose a more ambiguous and general representation. Instead
of complex emotions, the PAD model focuses on basic af-
fective states represented across three dimensions. Pleasure
is associated with the valence of the emotion; psychological
arousal describes the intensity of the emotion; and finally
dominance describes the agency or level of autonomy during
the emotional episode. One can place different emotions within
this 3D continuous space without explicitly categorising them,
reducing the chance of misrepresenting how a subject feels.
This type of evaluation lends itself better for continuous and
subjective annotation [9], [10].

While the Circumplex model and the PAD model represent
affect across two and three dimensions, respectively, in the
AGAIN dataset we focus currently on soliciting annotations
based on the dimension of arousal. Selecting and investi-
gating arousal first—instead of other affect dimensions—is
relevant for games, the core domain of AGAIN. Arousal is
present and dominant as an emotional manifestation in game
affect interactions and has been associated with challenge
[16], cognitive and affective engagement [17], tension [18],
fun [19], frustration [20] and flow [21], as well as positive
post-game outcomes, such as increased creativity [22] and
working memory [23] performance. Focusing on one affect
dimension reduces the cognitive load of the annotation task
[7], which in turn increases the reliability of our data; however,
it limits the expressive range of affect annotation in the dataset.
Moreover, the focus on arousal assists the research community
to build, extend upon and advance research that already has
benchmarked the study of arousal in games [4], [5], [8].

B. Affect Modelling in Games

Player modelling is the study of video game play both in
terms of behavioural and affective patterns [24]. It relies heav-
ily on artificial intelligence methods for building predictive
models of player behaviour [25], [26], playtime [27], churn
[28], [29], or player experience [5], [9], [30]. It is naturally
characterised by dynamic representations and modelling of
data, thereby providing even moment-to-moment predictions
of a game’s elicited experience [31]. A key limitation of player
modelling, as with any other data-driven approach, is that it
is data hungry. In particular, studies that focus on affective
aspects of player experience require ground-truth affect labels
which are often costly to collect [32], [33].

To address the above challenge, an increasing number of
studies focus on approaches that could realise aspects of gen-
eral player modelling [3]. General player modelling features
methods that are able to predict a player’s affective state on
unseen games. While early studies such as that of Martinez
et al. [34] investigated game-independent features of the
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playing experience, such as heart rate and skin conductance,
later studies put an emphasis on finding general gameplay
features either manually [35] or through algorithmic feature
mapping [36]. More recently, Camilleri et al. investigated
general gameplay features and generalised metrics of player
experience across three dissimilar games [4]. Their study used
high-level features such as goal-oriented and goal-opposed
gameplay events and relative metrics of arousal to moderate
success, showing the difficulty of creating general player
models. Similarly, Bonometti et al. used high-level general
features to characterise the gameplay context (such as activity
count and activity diversity) to model engagement across six
games published by Square Enix Ltd. [37].

III. AUDIOVISUAL AFFECTIVE DATASETS

The availability of large-scale corpora comprising affect
manifestations that are elicited through appropriate stimuli
is a necessity for affect modelling. Creating datasets that
are annotated with reliable affect information is, therefore,
instrumental to the field of AC at large. In this section we
review representative affective corpora that rely on audiovisual
elicitors and discuss the contribution of AGAIN to the current
list of datasets that are enriched with affect labels. Table II
presents the outcome of our survey2. We follow a systematic
approach for reviewing the state of the art in affect corpora
and examine the following factors that distinguish the surveyed
datasets: the interactivity and the type of the provided elicitors,
the number of possible elicitor items, and the overall size of the
available video database (see second to fifth column of Table
II), the number of participants and their recorded modalities
(see columns six and seven of Table II), the annotation
protocol in terms of perspective and type of annotation (see
columns eight and nine of Table II), the affect labels (see
column ten of Table II), and finally the number of annotators
(if different from the number of participants and/or not self-
reported) and number of tasks each annotator had to complete
(see the last two columns of Table II).

It is apparent from Table II that affective datasets have
gradually—over the last decade or so—drifted away from tra-
ditional induced elicitation and posed expressions, and instead
turned towards soliciting spontaneous emotion manifestations.
New datasets have been focusing on elicitation through nat-
uralistic expressions. While some of these datasets use their
own elicitors, many rely on popular media, using video clips
and still images from music videos and movies [39], [41], [42].
This method has proved to be reliable, cost-effective, and easy
to set up, which subsequently led to a widespread adoption in
the field. Compared to staged videos and images, interactive
elicitors provide more organic stimuli. While reactions to non-
interactive media can produce spontaneous expressions, inter-
active elicitation can increase the participants’ involvement
with the elicitor and reveal emotional reactions that might
be hard to elicit with pre-recorded videos and images alone.
Subsequently, there has been a growing body of research

2N/A indicates where the category is “not-applicable” (e.g. there are no
participants when third-party videos are used) and UNK indicates if an
attribute is “unknown”.

dedicated to enrich the set of affective corpora with interactive
elicitors. These datasets use a wide-range of methods including
dyadic tasks [43], [44], group tasks [45], board games [46],
and video games [48], [49]. These interactive tasks provide
a more complex and multifaceted affective stimulus, while
organically structuring the participants’ experience.

Most traditional affective computing databases surveyed
capture affective dimensions such as arousal and valence,
with some datasets offering labels for additional dimensions—
such as dominance—and categorical labels (see the annota-
tion/labels column in Table II). However, datasets using inter-
active elicitors tend to have a wider focus. While some of these
datasets collect affective and emotional labels, their primary
focus is task-related emotional outcomes. In datasets focusing
on gameplay, this generally includes gameplay experience
[46] and other game-related outcomes–such as frustration,
perceived challenge [47], [48], engagement [48], and fun [47],
[49]. Studies that use the same affective labels are easier to
compare and their lessons easier to transfer to new data than
studies using a more diverse set of labels (i.e. fun, engagement,
challenge, etc.). On one hand, the mapping between labels
such as “fun” and “challenge” can be uncertain; and on the
other hand, it can be difficult to reliably translate outcomes
such as “engagement” to more traditional affective computing
concepts such as arousal or valence.

The affective datasets we survey appear to be rather split
in terms of annotation type used. While some (e.g. DEAP
[39], MANHOB-HCI [38]) opt for self-reporting (first-person
annotation), many databases (e.g. RELOCA [44], SEWA [43])
use only a few expert annotators in a third-person manner.
There is a clear trade-off between these approaches. First-
person annotations (i.e. self-reported labels) are ideal for
capturing the subjective appraisal of emotional content, while
third-person annotations are better at labelling emotion mani-
festation through inter-rater agreement [50]. Interestingly, most
datasets using an interactive elicitor also opt for first-person
annotation through self-reports. A possible explanation is the
higher degree of participant involvement, which makes the
experience more unique to the participant. Such a highly sub-
jective experience is better captured via first-person reporting.
There is a definite trade-off, however, between interactive
and non-interactive elicitation. Using multimedia clips for
elicitation offers a cost-effective solution, which leads to large
and varied datasets. On the other hand, interactive elicitors can
stimulate emergent emotions more naturally.

Datasets using non-interactive elicitors are generally larger,
while the cost associated with using interactive elicitation lim-
its these datasets. Table II shows that interactive datasets often
focus on fewer elicitor items. However, this lack of variety
is often offset by the different ways participants can interact
with these elicitors, producing more diverse data. Despite this
diversity, there are not many datasets that feature multiple
different interactive elicitors. The handful of examples either
combine dissimilar datasets [4]—which comes with its own
challenges in reconciling different data formats—or use a
small set of very similar elicitors—e.g. the FUNii dataset [49]
features two similar games from the same franchise. There
are some exceptions: for instance, the MUMBAI dataset [46]
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features six board games, although the data here is not self-
reported but labelled by third-person annotators.

AGAIN addresses the aforementioned limitations by offer-
ing a large-scale corpus that is based on a set of dissimilar
interactive affect elicitors that are annotated through a first-
person protocol. While the dataset at the time of writing is
limited to 9 games and their annotated arousal, the dataset
is planned to be augmented through more affective dimen-
sions and enriched through more games. The resulting dataset
leverages the strength of active emotion elicitation while
producing data in volumes comparable to databases featuring
non-interactive affect stimuli. Moreover AGAIN provides a
diverse database for general player affect modelling research
that is not possible within any of the existing corpora.

We position AGAIN at the intersection of traditional affec-
tive computing corpora and datasets with a focus on interactive
emotion elicitation. By focusing on a core affect dimension
(i.e. arousal) instead of task-related complex emotional out-
comes, we aim to make the dataset more relevant to traditional
AC research. We argue that the use of video games as inter-
active elicitors combined with traditional affective labels can
also help bridge the gap between AC and games user research.
As games are highly interactive media, the captured data and
annotations encode not merely player affect but also behaviour
and game context. We focus on self-reported labels to better
capture the subjective intricacies of gameplay. Finally, we
choose to record continuous unbounded traces of arousal using
RankTrace [8] via the PAGAN online annotation framework
[7]. Such traces can be processed and machine learned in
a number of ways including regression, classification and
relational learning [9].

IV. GAMES

Nine games, across three different genres, were designed
and developed as affect elicitors specifically for the AGAIN
dataset. We put careful consideration to create software which
is aesthetically pleasing, representative of popular sub-genres
of games, can be understood immediately with a basic level
of game literacy [51], and produces a coherent and consistent
dataset without the need of heavy pre-processing. The game
genres were selected (racing, shooters, platformers) because
they represent a good cross-section of the game genres [52]
and are among the most popular among gamers [24], [53],
but also because they have simple enough controls and clear
mechanics so that players can pick them up quickly. Opposed
to other genres, such as role playing or strategy games, that
require longer time investment and players to learn the specific
mechanics, strategies and synergies, the games in the dataset
relied on fast-paced genres and popular tropes to communicate
the game rules as fast as possible. Specific games were
designed under each genre are representative of the genre.

A. Racing

The racing genre is characterised by fast-paced driving
against a number of opponents in a given track. The dynamics
of the experience is partly dictated by the limited interaction
with opponent vehicles (e.g. pushing into each other) but

mainly defined by the track itself. In the AGAIN database,
three games are representing distinct sub-genres of racing
games. TinyCars is an arcade-style racer with an isometric
view (see Fig 2a). Its controls are the hardest to master due to
the drifting of the player’s car. Solid is a more traditional rally
game, with more realistic handling (see Fig 2b). As the player
sees the track from the driver’s seat, adapting to the turns of
the track is more challenging. ApexSpeed is a speed-racer type
game, with minimalist controls (see Fig 2c). While the player
only has to change lanes (the vehicle accelerates and follows
the track automatically), the game has a faster pace than other
racing games and additional elements are complicating the
track (i.e. speed boost platforms and obstacles).

B. Shooter

The shooter genre focuses on eliminating opponents using
projectile weapons. The gameplay dynamic of these games
builds on hand-eye coordination and it is characterised by
periods of suspense and periods of engagement with the in-
game opponents. Shooter games in the AGAIN dataset provide
examples of different shooter sub-genres. Heist! is a typical
first-person shooter game with similar mechanics to modern
shooters (see Fig 2d). Because the player has to wait for their
health to regenerate, the play experience is broken up into
smaller engagements. In contrast, TopDown has a top-down
view, an automatic weapon, and health pickups (see Fig 2e).
This provides a more action-packed environment as the player
is not encouraged to stop if they are low on health. These two
games also feature less linear maps compared to other games
in the dataset. Shootout on the other hand does not feature
traversal at all. In this game the player can only aim and shoot
as the screen is filled with more and more enemies (see Fig 2f).
This dynamic of even-increasing intensity is typical of arcade-
style games (including shooters).

C. Platformer

The platformer genre focuses on traversal and often requires
precision and dexterity. The platformer games featured in the
AGAIN dataset are the most diverse set of games. Endless
is an endless-runner, a popular mobile-game genre. In these
games, the player moves forward automatically at an ever-
increasing pace while they have to attack or dodge incoming
obstacles (see Fig 2g). Subsequently, Endless is one of the
most frantic games in the dataset. Pirates! is a classical
platformer, akin to Super Mario Bros (Nintendo, 1985) (see
Fig 2h). This game has a more relaxed pace as the gameplay
is focused on light platform puzzles and simple traversal.
Finally, Run’N’Gun is a shoot-em up game, which has the
characteristics of both a platformer and shooter game (see
Fig 2i). Thanks to the shooting mechanics, number of enemies,
and enemy projectiles, this game has a more intense gameplay
loop compared to the other platformer games.

V. AGAIN DATASET

Games in the AGAIN dataset were built for the WebGL
platform and are played in a web-browser. The games were
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(a) TinyCars (b) Solid (c) ApexSpeed

(d) Heist! (e) TopDown (f) Shootout

(g) Endless (h) Pirates! (i) Run’N’Gun!

Figure 2. Start screens of the nine games included in the AGAIN dataset, showing the game’s rules and players’ controls.

integrated into the PAGAN annotation platform [7], which
allowed the large-scale crowd-sourcing of both the game
playing and annotation tasks.

A. Protocol

The collection procedure took anywhere between 45 to 55
minutes and followed by a stimulated recall protocol [54].
Participants were invited through Amazon’s Mechanical Turk
service3 and were compensated with 10 USD for their time.
The only criterion for participation was prior purchase of video
games, in order to filter out potential subjects who might not
have the game literacy required to play the games. Participants
were greeted with an introduction screen (see Fig. 3), which
informed them about the overall task and explained arousal as
a feeling of tension, excitement, exhilaration or readiness and
the opposite of boredom, calmness or relaxation. The experi-
ment consisted of 9 rounds, each round consisting of 2 minutes
of game-play followed by 2 minutes of annotation. Due to the
high cognitive load of video game play, the annotations could
not be collected at the same time as the game play telemetry.
To mitigate this issue, a stimulated recall technique was used.
Participants’ gameplay was captured and played back to them

3https://requester.mturk.com/

Figure 3. Introduction screen of the experiment.

during the annotation process. The collection procedure was
set up in an iterative manner with participants playing for 2
minutes, then annotating their gameplay video for 2 minutes.
The order of the games was randomised and this procedure
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Table III
NUMBER OF FEATURES EXTRACTED PER GAME

Genre Sub-Genre Title # Features
Racing Arcade-Racing TinyCars 33

Rally Solid 34
Speed-Racer ApexSpeed 34

Shooter First-Person Shooter Heist! 37
Top-down Shooter TopDown 38
Arcade-Shooter Shootout 23

Platform Endless Runner Endless 33
Mario-Clone Pirates! 39
Shoot’Em’Up Run’N’Gun 47

was repeated until all games were played and annotated.
After the experiment, participants filled in a simple exit-survey
recording their biographical data and gaming habits.

B. Participants

Through the procedure presented in Section V-A, we
collected data from 124 participants4 which include 1, 116
gameplay sessions (124 sessions per game) with detailed
telemetry and over 37 hours of gameplay videos. Out of the
124 participants, one identified as non-binary, 43 as female,
and 80 as male. Participants’ age varied between 19 and
55 years old (average of 33). Most participants were from
the USA (82%); the remaining 22 participants came from
Brazil (10 participants), Italy (3), Canada (2), India (2),
Czech Republic (1), Germany (1), and Romania (1). Most
participants identified as casual gamers (57%) or hard-core
gamers (36%). Reflectively, the majority of participants (87%)
were playing daily or weekly. All participants had either a PC
or a gaming console or both, with the most popular platform
being PC. Participants played very diverse games in their
free time across different genres: from casual games through
platformers, sports simulators, shooters, to role-playing games.
The anonymised demographic data is included in the dataset.

C. Game Footage Videos

For realising first person annotation, the gameplay footage
of players had to be recorded and annotated by the players
themselves. As a result the raw AGAIN dataset features 1, 116
videos of around 2 mins each (i.e. over 37 hours of game
footage). The video database contains more than 3×106 frames
of video, which are recorded at 24 FPS and have a resolution
of 960×600 pixels. Such data can enable future research that
employs computer vision and deep-learning to directly map
pixels to emotions [5]. Previous studies have shown promise in
using general-purpose representations such as pixel data from
game footage [55], and utilising audiovisual data for learning
through privileged information [56].

D. Game Context Features

In addition to the raw video game footage, AGAIN features
a number of hand-crafted attributes for each game. Inspired by

4While 169 participants completed the data collection process, 45 partic-
ipants were omitted as their experiments were incomplete (i.e. no video or
annotation data) due to software or hardware error.

Table IV
THE GENERAL GAMEPLAY FEATURES OF AGAIN

feature description
time_passed time counted from the start of the recording
score player score
input_intensity number of keypresses
input_diversity number of unique keypresses
idle_time percentage of time spent without input
activity inverse of idle_time
movement distance travelled + reticle moved (in shooters)
bot_count number of bots visible
bot_movement bot distance travelled
bot_diversity number of unique bots visible
object_intensity number of objects of interest
object_diversity number of unique objects
event_intensity number of events
event_diversity number of unique events

advances in machine learning with privileged information [56],
[57] we view telemetry data as privileged information and we
include such ad-hoc features in the dataset. Privileged informa-
tion here means information that pertains to an experience but
not readily available to an observer. This kind of information
generally encodes domain specific or hard-to-attain data. The
associated cost of learning the information makes the data
valuable in building expert systems, but poses some limitation
to data-hungry machine learning approaches. When it comes
to video games, privileged information can include player
physiology or game telemetry based on expert heuristics [56].
Fusing gameplay features with other user modalities has also
been a dominant practice in game-based affective computing
[58], [59]. The game context features described in this section
are considered in the preliminary data analysis of the dataset
in Section V.

All AGAIN games implement the same data-logging strat-
egy and use a similar method for recording telemetry. Games
within the same genre share the same feature labels. Not all
features, however, have a qualitative meaning for all games
within a genre—for instance, players move in Heist! but
are immobile in Shootout. To ease the data collection and
aggregation process, when features are absent from a game
they are given values with zero-variance (zeroes or ones,
depending on the feature). For example, a looping racetrack is
only present in the Solid game (see Figure 2b), therefore the
visible_loop_count feature is always zero in the other
racing games.

Table III shows the number of features we have ex-
tracted per game with the zero-variance features removed.
Recorded game telemetry encodes control events initiated by
the player (e.g. player_steering), player status (e.g.
player_health), gameplay events outside of the player’s
control (e.g. bot_aim_at_player), bot status (e.g.
bot_offroad), and the proximal and general game context
(e.g bot_player_distance and pickups_visible).
Gameplay is recorded at approximately 4Hz (every 250ms).
Due to limitations of the Unity engine and the WebGL format,
the logging rate is not consistent. To mitigate this issue, the
logging script aggregates multiple ticks of the engine’s update
loop and provides an average value. Due to this processing
technique almost all events are represented by continuous



8

Figure 4. The PAGAN RankTrace annotation interface. The gameplay video
is played in the window above and the participant controls the annotation
cursor (blue circle) below, drawing a visible annotation trace.

values. For example, pickups_visible can take float
values under 1 when a pickup just became visible at the
end of the given 250ms window. The only features which
are represented by integer values are player_death and
objects_destroyed because of their sparsity.

In addition to the features enumerated in Table III, the
dataset includes 14 general gameplay features. These general
features are ad-hoc designed and derived from the game-
specific events and are based on contemporary studies of
general player modelling [4], [37]. Events which require
expert evaluation of the game such as the goal-oriented and
goal-opposed events of Camilleri et al. [4] are omitted from
these general features of AGAIN, but may be considered as
additional features. Table IV lists these features alongside their
explanation.

E. Annotation

The annotation task was administered through the PAGAN
platform [7], using the RankTrace annotation method [8].
PAGAN is an online annotation platform developed to be an
easy-to-use software for crowdsourcing annotation tasks with
a focus on one-dimensional time-continuous annotation using
three different methods. RankTrace [8], an ordinal annotation
framework, GTrace [60], a bounded annotation scale which
gathers continuous data that can be converted to a Likert-
like format, and BTrace, which is a binary annotation tool
for both time-continuous and discrete annotation, inspired by
AffectRank [61]. We have chosen RankTrace as our annotation
framework for this dataset.

RankTrace allowed us to collect data in an unbounded
fashion (see Fig. 4). Due this collection method, the value
range of the annotation is not bounded between 0 and 1,
which can make it significantly harder to use the data for
certain tasks—for example applying regression. However, this
type of data is best interpreted as subjective, ordinal labels
as it preserves the relative relationships between datapoints
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Figure 5. Distribution of summed cumulative DTW distance values of each
session compared to every other session. The solid line shows the average
score, while the dotted lines show the first and second standard deviation.
Values in the grey field (right tail) are removed during data cleaning.

[9], and therefore is well suited for preference learning tasks.
The unbounded trace means that users can always adjust
their annotations higher or lower than previous values, which
alleviates much of the guesswork compared to when users
annotate on an absolute and objective scale [59]. The ordinal
nature of the annotation follows the cognitive process of
human evaluation, as it provides a trace which factors in
habituation [62], anchoring bias [2], [63] and recency-effects
[64]. To preserve this subjectivity encoded in the annotation,
we apply data transformation (i.e. normalisation and pairwise
transformation) based on individual sessions.

F. Data Cleaning

To ease any subsequent analysis and future studies based
on the dataset, in this section we propose a preprocessing
pipeline which removes 10.8% of the dataset as outliers.
AGAIN contains both the raw and the cleaned data that result
from the process outlined here.

Since PAGAN only records annotations when there is a
change in the signal and the Unity engine loop is affected by
hardware performance, as a first step we resample the whole
dataset at 4Hz to get a consistent signal. We remove duplicate
values from the dataset, as well as sessions which are either too
short (less than 1 minute) or too long (more than 3 minutes)
due to software or technical errors during crowdsourcing. We
also prune sessions which have less than 10 annotation points,
assuming that the participant was unresponsive. This initial
cleanup phase removes 24 sessions (2.1% of the data).

Inspired by Makantasis et al. [55], we apply Dynamic Time
Warping (DTW) to clean the dataset of irregular annotations.
DTW is used extensively in time-series analysis as a distance
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Table V
PRELIMINARY ANALYSIS OF THE CLEAN AGAIN DATASET. THE TABLE
LISTS THE NUMBER OF GAME SESSIONS AND THEIR CORRESPONDING

DATA POINTS ON A FRAME-BY-FRAME BASIS (250 MS). THE TABLE ALSO
LISTS THE NUMBER OF 3S TIME WINDOWS WITHIN WHICH THE AROUSAL
VALUE INCREASES (↑), DECREASES (↓) OR STAYS STABLE WITHIN A 10%

THRESHOLD BOUND (—).

Arousal (3 s interval)
Game Sessions Data (·103) ↑ ↓ —
TinyCars 109 52.75 543 461 3386
Solid 109 53.42 613 492 3346
ApexSpeed 114 56.10 607 462 3581
Racing 332 162.27 1763 1415 10313
Heist! 110 53.91 580 424 3479
TopDown 115 56.90 650 463 3614
Shootout 106 51.77 471 341 3496
Shooter 331 162.57 1701 1228 10589
Endless 112 55.11 559 438 3595
Pirates! 110 52.26 625 534 3186
Run’N’Gun 110 54.97 618 431 3521
Platformer 332 162.34 1802 1403 10302
Total 995 487.18 5266 4046 31204

measure [65]–[67]. DTW is an elastic measure of distance
between two signals, which can be of different length and
sampled at different rates [65], [68]. The DTW distance is
calculated based on the similarity matrix between two time-
series, where every point of the two sequences is matched
to each other—with one-to-many mapping where necessary
[68]. While in signal processing DTW is often applied to syn-
chronise different signals, the cumulative distance—calculated
when finding the warping path between signals—provides
a reliable similarity measure between the dynamics of the
time-series in question [65], [66]. We apply the cumulative
DTW distance as a similarity measure between arousal traces,
in order to remove irregular annotation patterns; we do not
transform any of the signals. It should be noted that the signals
have been synchronised and resampled, and thus the length and
frequency of all annotation traces is the same.

As a first step in the cleanup process, we calculate the
cumulative DTW distance to an artificial flat baseline (arousal
annotations at 0 in all time windows). The resulting score
provides us with a similarity measure to an artificial session
where the participant performed no annotation; this allows
us to remove unresponsive outliers. We remove all sessions
which fall more than two standard deviations closer to zero
from the average cumulative distance (the left tail of the
distribution). This step removes 28 additional sessions from
the dataset (2.5%). Since games in the dataset are quite short
and players encounter similar situations, we assume that their
experience would be somewhat similar. Therefore, we remove
sessions where the annotation traces are too far from other
traces in the dataset. To this end, we apply the cumulative
DTW distance metric between each datapoint and sum up
the resulting distances. This metric shows us the relative
similarity of a session to every other session. We remove all
sessions which fall more than two standard deviations away
from the average summed cumulative distance (see Fig. 5).
This step removes an additional 69 sessions (6.2%). This last
step removes annotations which are too dissimilar from the

general trends of participants’ annotations; we presume that
either the annotation was improper or that this session’s elicitor
was somehow not in line with how other players played the
same game. Observing outliers empirically affirms that most
participants whose annotation traces were atypical encountered
issues with game controls, experienced slow-down and other
glitches, or in most cases annotated positive and negative
events instead of high and low arousal.

At the end of the cleaning process, 121 sessions—including
all data from 2 participants—are removed (10.8%). Around
40% of the outliers are removed due to inactivity or in-
completeness, while the rest is held out due to unusual
annotation patterns. The cleaning process proposed in this
section is conservative due to the limitations of the online
collection process, where there is less control over the quality
of annotation. However, the raw dataset is also made available,
which provides opportunities for different processing methods.
The clean dataset consists of 122 participants and 995 sessions;
details on the clean dataset are provided in Section VI.

VI. AGAIN ANALYSIS

Following the cleanup process presented in Section V-F,
this Section performs a preliminary analysis of the clean
version of the AGAIN dataset, focusing on patterns in the
arousal annotations and the AGAIN game context features (see
Section VI-A). Section VI-B describes an initial set of affect
modelling experiments with this dataset, serving as baseline
for future studies. While some games receive more aggressive
data cleaning than others (TinyCars, Solid, and Shootout),
overall there is an even distribution of data and sessions across
genres as shown in Table V.

A. Trends in the Data

Figure 6 shows the average annotation trace as calculated by
averaging values in time windows of 250 ms of all sessions’
traces. The gameplay sessions have been normalised to show
the relative trend in the data. It is evident that arousal annota-
tion tends to have an upwards tendency. This is not surprising,
as most games considered are action-oriented with an ever-
increasing challenge; for instance, Endless keeps increasing
the speed of the game which evidently makes it both harder
and more arousing as time passes. Racing games (top row of
Figure 6), on the other hand, tend to have arousal converging
to a maximum mean value after the first 30 seconds. This is
likely because the player is initially rushing to overtake the
opponents’ cars (players always start last); after this initial
excitement the race becomes repetitive, with players trying to
either maintain the lead or slowly catch up to the leader.

Observing the twelve general gameplay features shared
across all nine games, one can detect some notable differences
between games. In terms of the player’s input (control), games
with more complex interaction schemes appear to have higher
input diversity and input intensity (see Table IV for details
on these features). Even accounting for the games’ different
control schemes (i.e. the number of controls the player has
available), ApexSpeed, Shootout, and Endless have the lowest
intensity (number of keypresses) and diversity (number of
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Figure 6. Average annotation traces (normalised per session) showing an
increasing tendency. The coloured area around the mean depicts the 95%
confidence interval of the mean.

unique keypresses) while Pirates! and TinyCars have the high-
est diversity. This discrepancy could point to an easier control
scheme for the former games, but it could also point to a
more frantic and engaging interaction in the latter games. The
idle time and activity features corroborate this observation, as
racing games have less idle time without keypresses (since
in two of the games the player needs to constantly press a
button to move forward). In contrast, games where participants
mainly reacted to stimuli (e.g. in Shootout players react to
opponents popping up and in Endless players move only when
a gap or obstacle is near) featured much higher idle times. In
terms of other features, the number of bots (opponents) visible
on the screen varied wildly between games, with Tiny Cars
and Shootout having the highest number of visible enemies on
average. Perhaps due to the many enemies present, Shootout
had the highest number of events (event intensity in Table IV),
while Solid had the fewest events per time window.

B. Preliminary Arousal Models

In this section we provide an initial modelling approach
for the AGAIN dataset, serving as a baseline study for future
research with this dataset. As a preliminary step, we process
the clean AGAIN dataset to predict arousal. To this end,
we split the annotation traces into 3-second time windows—
computing the mean of the window—and introduce a 1-second
lag to the annotation trace. Our choice of time windows and
lag is motivated by best practices established by a long line
of prior research [4], [8], [61], [69]–[72], as well as empirical
results of studies into AC research design. It has been shown
that a 3-second window size is well-suited to capture valence
and arousal changes [73]. In their experiment on the DEAP

dataset [39], Ayata et al. have shown that affective data pro-
cessed at this granularity leads to a higher model performance
[73]. Mariooryad and Busso have shown that while an optimal
input lag value can be found algorithmically, an ad-hoc value
between 1 to 3 seconds gives a good approximation of human
input lag in AC annotation tasks [74]. Here we chose a 1-
second lag to conform to the aforementioned body of research.
All features (including arousal values) are normalised on a per-
session basis to a [0, 1] range. This means that feature values of
0 and 1 are indicating the minimum and maximum intensity of
a given feature only within a session. This processing method
gives weight to the relative dynamics of features instead of
focusing on the absolute values.

While in the published dataset both clean and raw data is
available for the application of different machine learning tech-
niques, we treat arousal modelling in AGAIN as a preference
learning task [9], [10], [75] and focus on predicting arousal
change from a 3-second time window to the next. We apply
preference learning through a pairwise transformation. During
this transformation we observe consecutive datapoints within
sessions in pairs and create a new representation of the dataset.
By describing the difference between arousal values of time
windows, this new representation reformulates the preference
learning problem as binary classification (arousal increasing
or decreasing). For every (xi, xj) ∈ X pair of game data we
observe the relationship of their affect output (yi, yj) ∈ Y .
If yi is preferred to yj , we can label the distance between
the corresponding data points (xi−xj) and 1. Conversely, we
can label the reverse of this observation (xj −xi) as 0. While
either one of these observations is sufficient to describe the
relationship between xi and xj , by keeping both observations
(λxi−xj

= 1 and λxj−xi
= 0), we can maintain a 50% baseline

accuracy in the post-transformation dataset independently of
the trends in the dataset before the transformation. While this
method creates redundancies in the training data, it mitigates
some of the issues that arise from the strong temporal patterns
discussed in Section VI-A, as the algorithm is trained on both
increasing and decreasing examples. To reduce experimental
noise from trivial changes within the arousal trace, we omit all
consecutive time windows between which the arousal change
is less than 10% of the total amplitude of the session’s arousal
value. While this 10% threshold is based on prior experiments
in similar problems [18], [76], a more extensive analysis
could explore the impact of the threshold value on prediction
accuracy and the volume of data lost.

As mentioned above, applying this pairwise transforma-
tion to consecutive time windows reformulates the preference
learning paradigm as binary classification. To construct acces-
sible and simple models of arousal, this initial study employs a
Random Forest Classifier. A Random Forest (RF) is an ensem-
ble learning method, which operates by constructing a number
of randomly initialised decision trees and uses the mode of
their independent predictions as its output. Decision trees are
simple learning algorithms, which operate through an acyclical
network of nodes that split the decision process along smaller
feature sets and model the prediction as a tree of decisions
[77]. In this paper we are using the RF implementation in
the Scikit-learn Python library [78]. We initialise RFs with
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Figure 7. Performance of random forest models of arousal for each game with
game-specific, general, and all available features. The dotted line depict the
performance baseline and the error bars represent 95% confidence intervals.

their default parameters. For controlling overfitting we set the
number of estimators in the RF to 100 and the maximum depth
of each tree to 10. This experimental setup is meant to provide
a simple baseline prediction performance for the dataset, and
thus we are not tuning the hyperparameters of the algorithm.

To examine the validity of the general features discussed in
Section V-D, models are constructed for each game based on
three different feature sets: 1) game-specific features excluding
general features 2) general features across games shown on
Table IV and 3) all features combined. Due to the pairwise
transformation discussed above, the baseline accuracy of all
experiments is 50%. Because RFs are stochastic algorithms,
we run each experiment 5 times and we report the 10-fold
cross validation accuracy. Note that each fold contains the
data of 10 to 12 participants and no two folds contain data
from the same participant. The reported statistical significance
is measured with two-tailed Student’s t-tests with α = 0.05,
adjusted with the Bonferroni correction where applicable.

Figure 7 shows the performance of the RF models. Pre-
diction accuracy varies between 58.06% and 82.50% across
games. The results reveal that arousal appears to be easier to
predict in some games (e.g. ApexSpeed, TopDown, and End-
less) than others (e.g. TinyCars, Shootout, and Run’N’Gun).
In the racing and platformer genres, games with fewer input
options and an automatic progression system (ApexSpeed and
Endless respectively) are tied to higher model performance.
An explanation could be that games with more internal struc-
ture (due to the sparsity of actions the player can take and
automatic progression through the game with minimal input)
present a simpler problem. An exception to this observation
is Shootout, in which the controls are limited (only looking
around and shooting) and enemies appearing in an ever-
increasing speed, but despite these similarities with ApexSpeed
and Endless, Shootout models are struggling to reach 60%
accuracy (the lowest performance across all games).

Looking at individual games across different feature sets,
we observe that the general features manage to perform

comparably to the specific features independently of the game
tested. Game-specific features yield significantly higher per-
formances than general features only in 4 games (TinyCars,
Solid, Endless, and Pirates!). Moreover, the combination of
both specific and general features yields significantly more ac-
curate arousal models than either the game-specific or general
features (or both) in 5 games: Solid, Heist!, TopDown, Endless,
and Pirates!. These results demonstrate the robustness of the
general features presented in Section V-D and show that there
is little to no trade-off in representing the presented games in
a more abstract and general manner.

The arousal model performances presented in this section
highlight a number of challenges for future research. Firstly,
the differences in performances between games show that
the complexity of the affect modelling task is dependent
on the characteristics of the elicitor and the game context.
Finding new processing methods, data treatment, algorithms,
and model architectures which perform equally well across
different games is an open problem. Secondly, the robustness
demonstrated by the general features proposed in this paper
point towards the possibility of general player affect modelling
across games. While research has already been investigating
general player modelling in video games [4], early results
showed only moderate success. The dataset and baselines
presented in this paper provide a large open source database
of games with robust enough general features to continue the
exploration of general player modelling.

VII. DISCUSSION

This paper presented the AGAIN dataset, a database for
affect modelling in video games. The dataset contains data
from 124 players and includes game telemetry, gameplay
videos, and arousal annotations of 1, 116 gameplay sessions.
The paper also presented the dataset, discussed the underlying
trends in the data, and showcased some preliminary preference
learning models. In this section, we discuss some of the limita-
tions and propose avenues for future work, before concluding
the paper.

A. Limitations

While the crowd-sourcing protocol for data collection en-
abled a larger dataset with high extensibility potential, most of
the limitations of AGAIN stem from the same crowd-sourced
protocol. Collected data lacks modalities traditionally associ-
ated with AC datasets. Neither physiological signals nor facial
expression data is collected, as the online procedure focused
on behavioural telemetry instead. While AGAIN features no
peripheral signals, the dataset also contains over 37 hours
of gameplay video footage, which can support a number of
computer vision-based applications [5], [55].

Whereas many affective datasets are composed of multiple
affective labels—with arousal and valence being the most
common—the AGAIN dataset focuses only on arousal. As the
game-playing task is already a lengthy and involved process,
annotating multiple affective dimensions was infeasible during
data collection. The choice of arousal was motivated by this
affective dimension’s strong connection to the dynamics of
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gameplay. This is especially important for first-person annota-
tions, as games already encode positive and negative events (in
the form of helpful and detrimental effects to the goal of the
game) which can be assessed by third-person annotators later.
However, the subjectively perceived dynamics of the game
might differ from an observer’s impressions.

While each game elicits similar playstyles across different
participants, the database features unique videos with self-
annotated arousal traces. AGAIN puts an emphasis on self-
reported labels as it is expected to yield ground truths of affect
that are closer to the experience [9], [69], [79]. The existing
in-game footage of AGAIN, however, can be used directly
for third-person annotation in future studies. Regardless of
the annotation scheme used (first vs. third person) AGAIN
annotations are captured in an unbounded fashion which
eliminates high degrees of reporting bias [9], [10].

A necessary but limiting factor is that collection of affect
labels is not concurrent with the collection of video and
telemetry data. Collecting reliable first-person affect labels
simultaneously to video game play is impossible due to the
high cognitive demand of the task; however, the stimulated
recall technique applied here does pose some limitations to
the annotation process as certain temporal biases can arise.

Finally, many game sessions in the dataset have an overall
increasing intensity, which is reflected in the corresponding
affective labels as well. While this is a limitation of the
dataset, it is also a limitation of the domain. Although the same
increasing intensity is true to even high-budget console and PC
games on the macro level, this dynamic is especially true to
short casual and mobile games played over short periods.

We note that the presented machine learning models are
quite preliminary, aiming to showcase a use-case for the
dataset along with a proposed cleaning and modelling pipeline.
Future studies should look into training and tuning more
complex models on AGAIN. However, as the published dataset
contains both the clean and raw data, future work can propose
different processing methods. While the presented models
show some level of robustness, they do not use all of the
data the dataset has to offer, such as the captured videos.

B. Future Work

The AGAIN dataset was created to facilitate games user
modelling through the lens of affective computing. The dataset
allows for the adoption of machine learning techniques that
use game telemetry and video data to model player arousal.
While a more traditional approach was presented here, future
studies should utilise the available video database and apply
deep leaning methods to create more complex models. As
the dataset contains a large set of games, AGAIN is espe-
cially useful for research into general affect models. Future
studies should focus on the transferability of models across
different games and genres in the dataset [71]. The current
dataset only encodes one affective dimension, arousal, across
videos from nine games; AGAIN, however is easily scalable
to more affective dimensions and more game-based affect
stimuli. Future work will focus on expanding the labels with
expert annotations of valence and dominance to match the

format of other affective computing databases [39], [41], [43],
[44]. Its accessibility and its unobtrusive data collection via
crowdsourcing make AGAIN easily extendable to more affect
labels, affect elicitors and participants.

VIII. CONCLUSION

This paper introduced a new database for affect modelling,
the AGAIN dataset. AGAIN is the largest and most diverse
publicly available dataset coupling gameplay context, game-
play videos, and annotated affect to date. It includes a variety
of interactive elicitors, in the form of nine games from three
popular yet dissimilar game genres. In particular, the dataset
consists of 37 hours of video footage accompanied by teleme-
try and self-annotated arousal labels from 1, 116 gameplay
sessions played by 124 participants. The motivation behind the
construction of this dataset is to facilitate and further advance
research on general player modelling through a clean, large-
scale, diverse (elicitor-wise) and accessible database.

Inspired by recent work on the importance of gameplay con-
text as a predictor of affect [5], the user modalities of AGAIN
are currently limited to in-game video footage and behavioural
telemetry data. In addition, the protocol of AGAIN limits
the user modalities available so that crowdsourcing of self-
reported affect annotations is both feasible and efficient. While
AGAIN puts an emphasis on accessibility—soliciting game
context and behavioural data from users as its modalities—the
AGAIN games can be used for small-scale, lab-based affect
studies that incorporate more user modalities including visual
and auditory player cues (e.g. [48], [55]).

Given the characteristics of a unique set of diverse elicitors,
a large participant count, first-person annotations and a large-
scale video and game telemetry database, AGAIN couples
important aspects of affective computing with core aspects of
game user modelling—thereby enabling research in the area
of general player modelling, in games and beyond.
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