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Abstract—A key challenge of affective computing research is
discovering ways to reliably transfer affect models that are built
in the laboratory to real world settings, namely in the wild. The
existing gap between in vitro and in vivo affect applications is
mainly caused by limitations related to affect sensing including
intrusiveness, hardware malfunctions, availability of sensors, but
also privacy and security. As a response to these limitations in this
paper we are inspired by recent advances in machine learning
and introduce the concept of privileged information for operating
affect models in the wild. The presence of privileged information
enables affect models to be trained across multiple modalities
available in a lab setting and ignore modalities that are not
available in the wild with no significant drop in their modeling
performance. The proposed privileged information framework
is tested in a game arousal corpus that contains physiological
signals in the form of heart rate and electrodermal activity, game
telemetry, and pixels of footage from two dissimilar games that
are annotated with arousal traces. By training our arousal models
using all modalities (in vitro) and using solely pixels for testing
the models (in vivo), we reach levels of accuracy obtained from
models that fuse all modalities both for training and testing. The
findings of this paper make a decisive step towards realizing
affect interaction in the wild.

Index Terms—privileged information, machine learning, affect
modeling, arousal, games, physiology, pixels

I. INTRODUCTION

Enabling forms of affective interaction in real-world ap-
plications and settings, i.e. in the wild, is a core vision for
affective computing (AC) [1], [2]. AC in the wild, however,
remains a critical challenge as AC systems required to operate
outside a controlled environment are limited by the accuracy
of their affect models. Most importantly, the performance of
such systems is determined largely by the quality of affect
sensing in the wild.

Sensing affect in real-world settings is limited by a number
of factors. First, it is often the case that sensing equipment (e.g.
cameras, physiological sensors, microphones) either introduce
data bias due to environmental conditions or experimental
noise due to hardware failure. Naturally, if the prediction of
affect is dependent on such modalities, the affect models will
under-perform. Second, as AC occurs in vivo, sensors and
multimodal sensing information are often not available, e.g.,
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in users’ homes or in their cars [3], [4], and in public spaces
including museums [5], hospitals or rehabilitation centers [6],
which define some of the most popular application domains of
AC. Finally, information about users in the wild often comes
with a cost in terms of intrusiveness (e.g. requiring users to use
sensors) and privacy (e.g. access to a smartphone’s webcam
and microphone).

In this paper we are inspired by recent trends in machine
learning and introduce the notion of privileged information
for modeling affect in an attempt to overcome the current
limitations of affect sensing in the wild. In particular, the
Learning Using Privileged Information (LUPI) paradigm [7],
[8] is best suited for tasks featuring dissimilar amounts of
information available during the model training and the model
testing phases. Our hypothesis is that the LUPI paradigm
can be beneficial for the performance of affect modeling; in
particular sensing and operating these models in the wild. We
test our hypothesis in the domain of video games by construct-
ing models of player annotated arousal across two dissimilar
games. Similarly to [9], [10], our deep network models rely
on gameplay pixels for both training and testing phases.
We offer our models privileged information in the form of
game telemetry data and physiological signals—electrodermal
activity and heart rate—during the training phase; these data
types are normally available through extensive user tests in
a quality assurance department or lab. We test our arousal
models, however, without this privileged information, in the
wild, as would be the case in a player’s home setting. Our
results suggest that the arousal models trained through privi-
leged information perform equally well as the models trained
with all modalities (pixels, telemetry and physiology) available
to the model during both training and testing. Our findings
suggest that privileged information is a critical milestone for
realising AC in the wild as models trained on information that
is available in a lab setting (in vitro) can perform equally well
when that information is not available or is distorted in the
wild (in vivo). Through privileged information the models of
affect gain on unobtrusiveness, accessibility and practicality.

This paper is novel in a number of ways. First, to the
best of our knowledge, this study applies for the first time
the LUPI paradigm in affective computing for building affect
models that use different modalities of information during



their training and testing phases. Second, following the LUPI
paradigm, we present a rigorous methodology for deriving
models of affect that perform equally well in vitro and in vivo,
making a step towards accurate affect modeling in the wild.
Finally, we validate our approach across two different games
with regards to privileged (telemetry and physiology) and non-
privileged information, as well as the arousal patterns they
elicit. The validation results suggest that exploiting privileged
information can boost the performance of affect models that
operate in the wild.

II. RELATED WORK

This section covers the related areas of pixel-based affect
modeling and affect modeling in the wild.

A. Pixel-based Affect Modeling

Due to the richness of information encoded in videos and
pictures, eliciting and modeling emotion via visual cues has
been at the core of interest in affective computing [11].

Before the deep learning era, the dominant approach for
representing visual content was based on ad-hoc handcrafted
features. Popular visual descriptors, such as SIFT [12], HOG
[13] and LBP [14] have been widely used to represent human
facial patterns via a set of features used as inputs to machine
learning models for emotion recognition [15], [16]. All those
approaches are characterized by low computing power and
memory requirements and, thus, are still being studied for use
in real-time embedded systems [17].

In the last decade, there has been a breakthrough in deep
convolution neural networks (CNNs) applied to the field of
computer vision. CNNs enable the end-to-end training directly
from input images unifying, this way, the feature extraction
and classification tasks. CNNs were first applied in [18] to
predict dimensional affective scores from videos. The need
for effectively training deep learning models triggered the
development of medium- and large-scale affect corpora [19],
[20]. Breuer and Kimmer in [21] train CNNs and demon-
strate their capacity to jointly learn various facial expression
recognition tasks. In [22], the authors use CNNs to learn
geometric and temporal features describing facial action points
to boost facial-based affect models’ performance. Ng et al.
[23] propose transfer of learning across CNNs for emotion
recognition through visual cues, while in [24], the authors
combine CNNs and recurrent neural networks for visual-based
arousal and valence modeling.

All the methods discussed above exploit data that either
has been collected in well-defined and controlled laboratory
conditions or directly depict the facial expressions of a human
subject whose emotional state needs to be predicted. Collecting
data in a laboratory is an invasive task that requires specialized
software and hardware, limiting this way the application of
affect models in real-life scenarios. At the same time, directly
depicting human subjects raises privacy and personal data
protection issues. This study aims to move affective modeling
outside of a laboratory’s closed boundaries by building models
able to predict affect using information that is available in the

wild. Moreover, it adopts a user-agnostic perspective using
solely the visual information of human-computer interaction
for predicting humans’ emotional states.

B. Affect Modeling In The Wild
Affect modeling in the wild focuses on developing models

able to analyse the emotional state of humans in real-life
scenarios that entail uncontrolled conditions. Towards this
direction large databases [20], [25]–[28] that simulate human
emotions in the wild are necessary [29]. Having large af-
fect corpora available enables the development of powerful
deep learning models that achieve state-of-the-art results.
Indicatively, AffWildNet [1], [24] effectively combines CNNs
and recurrent neural networks to accurately capture the face
dynamics and achieve the best performance in [20]. Toisoul et
al. [2] present the EmoFAN deep learning model that builds
on top of the face alignment network [30] to predict jointly
discrete emotional states and continuous affect dimensions.
EmoFAN achieves the best performance on the AfewVA
dataset [31]. Aspandi et al. [32] use adversarial-based neu-
ral networks to learn latent representations from audiovisual
signals for estimating affect in the wild. The authors of [33]
use multimodal transformers to capture and exploit temporal
dynamics of audiovisual information towards detecting affect
states. They demonstrate that multimodal deep learning affect
models can significantly improve affect detection in the wild.
Finally, Kolias and Zafeiriou [34] propose a unified framework
for affect modeling in the wild that considers facial expressions
and categorical affect, facial action units, and dimensional
affect representations.

Although the studies listed above model affect using infor-
mation captured in natural conditions, they all require direct
measurements from humans in the wild. Measurements such
as facial expressions employ sensitive personal data handling
that can limit the derived affect models’ application in real-
life scenarios. As mentioned above, this study follows a
subject-agnostic approach in affect modeling by using visual
information of human-computer interaction as sole input for
affect prediction. This crucial difference eliminates any privacy
issues, enabling our models’ unrestricted application in the
wild and in real-world scenarios.

III. DATASETS

To test the impact of privileged information on modeling
players’ affect, we selected two dissimilar games: Survival
Shooter and Space Maze depicted in Fig. 1. These games
belong to different genres and feature different mechanics,
pace and visual design. Survival Shooter is a fast-paced game
that requires accurate aiming and constant movement. Space
Maze, on the other hand, is a slow-paced physics game that
requires accurate movement timing. We use these two games
as our initial test-beds for investigating the degree to which
LUPI is beneficial for affect modelling.

A. Survival Shooter
Survival Shooter (SS) [35] is a game adapted from a tutorial

package of Unity3D. The player has to shoot down as many



Fig. 1. Screenshots from Survival Shooter (left) and Space-Maze (right)
games.

hostile toys as possible and avoid collisions with them. The
hostile toys spawn at predetermined areas of the level and
move towards the player’s avatar, which is equipped with a
laser gun for killing them. The maximum duration of gameplay
is 60 seconds.

B. Space Maze

Space Maze (SM) is a 3D maze-based puzzle game [36],
[37]. The player controls a cyan ball in a maze that contains
dark ball-shaped enemies and three diamond-shaped tokens.
A player has to collect all three diamond tokens and move
the cyan ball to a predefined goal point within 90 seconds,
without running out of health due to collisions with enemies.

C. Experimental Protocol

This study’s SS and SM data was collected from 25 players
(10 females) aged from 19 to 54 (median age 24); 70% of
the participants considered themselves good or expert players,
while 30% considered themselves novice or non-gamers. The
participants were recruited via snowball sampling and were
primarily university students with no prior experience in affect
annotation. Before annotation, all participants were presented
with an introductory screen that describes arousal as “the
intensity of gameplay no matter whether you like the game
or not. High arousal can be a feeling of readiness, tension,
excitement or exhilaration. Low arousal can be a feeling of
fatigue, boredom, calmness or relaxation”.

Each participant played a game and then annotated her
recorded gameplay footage in terms of arousal using the Rank-
Trace tool [38], [39], which allows continuous and unbounded
annotations. This play-annotation cycle occurred twice for
each of the games, resulting in 50 annotated gameplay videos
for each game. While the participants played the games, the
Empatica E4 wristband was fitted on their left wrist for logging
Heart Rate (HR) and Electrodermal Activity signals (EDA).
HR and EDA were captured at 1Hz and 4Hz, respectively,
while the gameplay footage was recorded at 30 frames per
second (30Hz), and RankTrace provided 4 annotations per
second (4Hz). Finally, along with the gameplay footage, we
logged gameplay telemetry data describing the main events
that happened during the gameplay. Figure 2 shows the dif-
ferent input modalities of the dataset and the corresponding
output (arousal).

Fig. 2. An example of the user modalities considered and the corresponding
arousal trace over time. In blue: extracted frames. In red: physiology (EDA,
HR) and an indicative telemetry feature (Ea). In green: annotation trace. Red
indicates privileged information in this paper.

D. Data Preprocessing and Feature Extraction

This study aims to produce models of affect that predict
arousal based on three different information streams: frames
of gameplay footage, gameplay telemetry data, and physio-
logical measurements. We split each gameplay session using
overlapping time windows. The sliding step, as well as the
length of the windows are hyperparameters. In this study, we
conduct experiments for 0.5 seconds sliding step and 1, 3,
and 5 seconds window length. Using a fixed sliding step and
overlapping time windows, the dataset size (number of time
windows) is not affected by windows’ length. By varying the
windows’ length, the amount of temporal information encoded
in each window changes affecting both visual information and
telemetry/physiology features.

Since RankTrace provides continuous and unbounded anno-
tations, we first normalize the arousal annotations to a [0, 1]
value range in a game session-wise manner. Each window is
described by the visual information, the gameplay telemetry
and physiology data, and the normalized arousal annotations
captured during its duration. The visual information is repre-
sented by a sequence of scaled RGB frames (160× 90 pixels)
concatenated along the channels’ dimension. The physiology
features correspond to the average and average gradient of HR
and EDA measurements, while the arousal label for a window
corresponds to the average of the normalized arousal annota-
tions. We extract 23 features from the gameplay telemetry data.
These features can be divided into four main categories: fea-
tures describing the overall gameplay context, features relating
to game objects, and features related to enemies. Most features
in the dataset represent the frequency of corresponding events
within a time-window. Table I summarizes the telemetry
features extracted with their corresponding descriptions.

IV. AFFECT MODELING USING PRIVILEGED
INFORMATION

In this section we detail the Learning Using Privileged
Information paradigm [7] for building models of affect capable
of generalizing in the wild, as well as the architecture of the
employed machine learning models.



TABLE I
LIST OF TELEMETRY FEATURES USED IN THE DATASET. TYPE INDICATES
WHETHER THE FEATURE IS ASSOCIATED WITH GAMEPLAY (G), PLAYER

(P), OBJECTS (O) OR ENEMIES (E)

Type Feature Description

G
Hh Heuristic about helpful events
Hd Heuristic about detrimental events
T time since level started

P

PM player movement
D Distance from last position
TM Percentage of time spent moving
PAG Player moves away from the goal
PTG Player moves towards the goal
PA Player attacks
PH Player hits an enemy
PK Player kills an enemy
Ph Player recovers health
Pd Player discovers new area
PC Player collects a pickup
PW Player wins

O Pa Pickup appears on screen
Pd Pickup disappears from screen

E

Ea Enemy appears on screen
Ed Enemy disappears from screen
Ee Enemy close to player (heuristic)
Ec Enemy starts chase
Eh Enemy hits player
Ek Enemy kills player

A. Learning Using Privileged Information

Vapnik formally introduced the Learning Using Privileged
Information (LUPI) paradigm in [7], [8]. LUPI targets prob-
lems characterized by an asymmetric distribution of infor-
mation between training and test time; that is, additional
information is given about the training data, which is not
available at test time. This setting is prevalent in affective
computing. In laboratory conditions, different modalities of
information can be captured to model humans’ affect. In the
wild, however, it is very difficult or even impossible to capture
the same modalities due to the sensing devices’ cost and the
invasiveness of the capturing procedures.

LUPI provides the means to transfer knowledge from all the
available modalities to a machine learning model that makes
predictions using only a subset of these modalities [40], [41].
In other words, LUPI allows a machine learning model of
affect to be trained exploiting information that comes from
all the modalities captured in a laboratory setting. During test
time, however, the same model makes predictions using only
those modalities that are available in the wild. The information
that is not available during test time is called privileged
information. In our dataset, we consider as privileged the in-
formation that comes from gameplay telemetry and physiology
measurements since this kind of information requires special
laboratory hardware and software to be captured. On the
contrary, we consider that visual information (captured using
only a screen recorder) is available both at training and test
times. In the following, we describe transferring knowledge
from privileged information to a machine learning model. At
this point, we should clarify that transferring knowledge using
LUPI is different from the transfer of learning techniques

used in deep learning [23]. Transfer of learning targets small-
sample setting problems by finetuning a model trained for a
specific task such that it performs well in a similar task. On
the contrary, using LUPI focuses on problems with asymmet-
ric distribution of training/testing information and trains the
student model from scratch.

Before transferring knowledge that comes from privileged
information, we first have to represent it appropriately. Fol-
lowing [41], [42], we represent that knowledge within the
probabilistic predictions of a trained machine learning model
and make predictions using only privileged information. This
model is called teacher and, under a classification setting, it
is trained following the typical supervised learning paradigm,
i.e. by minimizing the cross-entropy loss

LCE(pn) = −
1

N

N∑
n=1

yTn log(pn), (1)

where N is the number of samples in the training set, yn is
the ground truth label (one-hot encoded) of the n-th sample,
and pn is the probabilistic output of the teacher model.

Having a teacher model trained, we can transfer the knowl-
edge from privileged information to another model, called
student. The student model makes predictions based only on
the information that is available in the wild. Based on [42] and
[41], the transfer of knowledge can be achieved by feeding the
student only with those modalities of information available in
the wild and force it during training to balance between hard
ground truth labels and soft teacher’s probabilistic predictions.
This balancing can be formally defined in the following loss
function

Lstudent = (1− α)LCE(qn) + αLKL, (2)

where

LKL =
1

N

N∑
n=1

qn log(
qn
pn

) (3)

is the Kulback-Leibler divergence loss, α ∈ [0, 1], and
qn (a vector with positive elements whose sum equals 1)
is the probabilistic prediction of the student for the n-th
sample. In the presented case study, we train the teacher
using gameplay telemetry and physiology features, while the
student is trained based on gameplay footage frames and the
teacher’s predictions. We should emphasize that after training,
the student model makes predictions using information solely
from gameplay footage frames.

B. Machine Learning Models of Affect

We build two machine learning models of affect: one
student and one teacher. The teacher model is a fully con-
nected feedforward neural network with one hidden layer that
contains 128 neurons. The teacher network uses privileged
information—gameplay telemetry and physiology features—
during training and test time. We fuse privileged informa-
tion following an early fusion approach by concatenating
the telemetry and physiology vectors before using them as
input to the model. The architecture of the teacher network



Fig. 3. Architecture of the employed machine learning models of affect. The convolutional, max-pooling and dense layers are denoted by “C”, “P” and “D”,
respectively.

corresponds to the red stream in Fig. 3. The student model
is a 2D convolutional neural network with three convolutional
layers that receives as input video frames concatenated along
the channels dimension. The first two convolutional layers
consist of 32 and 64 learnable kernels of dimension 5 × 5
and stride equal to 2. The third convolutional layer consists
of 128 learnable kernels of dimension 3× 3, and stride of 1.
A 2× 2 max-pooling layer follows each of the convolutional
layers. The last convolutional layer’s output is fed to a dense
layer with 96 hidden neurons and then is propagated to the
output layer. At the penultimate layer of the student network
we also use dropout with a probability parameter of 0.1. For
both models we use Adam optimizer with learning rate 0.001.
The architecture of the student model corresponds to the blue
stream in Fig. 3. Finally, we use ReLU as the activation
function for all layers, for both teacher and student models.

To evaluate the impact of privileged information on affect
models’ performance, we build two more models that serve
as baselines. The first is a convolutional neural network that
is being trained and makes predictions by exploiting only
the information of gameplay pixels available on the footage
frames; we name this model pixel-based following the reported
benefits of modeling affect solely from pixels [9], [10]. The
architecture of this model is the same as the architecture of
the student model and visually presented by the blue stream in
Fig. 3. The second model, namely fusion, fuses and exploits
all modalities (privileged information and gameplay footage
frames) both during training time and for making predictions.
We fuse information from different modalities following a late
fusion approach. The stream that processes the visual infor-
mation has the same architecture as the student model, while
the stream that processes the telemetry/physiology features
has the same architecture as the teacher model. The learned
representations of the two streams are concatenated to form a
fused representation, which is directly propagated to the output
layer for training and making predictions. The architecture of
the fusion network corresponds to both streams in Fig. 3.

V. RESULTS

This section presents the training data preparation, the
framework for evaluating the impact of privileged information
on affect modeling, and the experimental results.

TABLE II
DATASET SIZES FOR THE SS AND SM GAMES ACROSS DIFFERENT

GAMEPLAY WINDOWS’ LENGTH.

1 second 3 seconds 5 seconds
Survival Shooter (SS) 3221 3039 2845
Space Maze (SM) 4379 4174 3967

A. Training Data and Evaluation Framework

In this study, we evaluate the impact of privileged infor-
mation on affect modeling in terms of arousal prediction
accuracy. The RankTrace annotation tool provides continuous
and unbounded values of arousal, and thus it may seem natural
to view the arousal prediction problem as a regression task.
We wish, however, to investigate the performance of affect
models under a user-agnostic approach without making any
assumptions regarding the value of the annotations, which, in
turn, result in biased and user-specific models [43]. For this
reason, we view arousal prediction as a binary classification
task [10]—labels of low and high arousal—and define arousal
prediction accuracy in terms of binary classification accuracy.

We use the approach presented in [10] to transform the
normalized arousal value of a gameplay time window into a
low or high arousal label. In particular, we compute the mean
value of the normalized annotations within each game session.
If the normalized annotation of the examined gameplay time
window is larger than the mean value of its session plus a
threshold ε, we assign to that window the label of high arousal.
Similarly, if its normalized annotation value is lower than the
session mean value minus the threshold ε, we assign to it
the low arousal label. The ε parameter determines a region
around the mean within which annotation values are labelled
as uncertain and ignored during classification to avoid unstable
classifiers due to trivial differences in their inputs. Based on
the successful findings of [10], we set ε = 0.1.

Following the approach described in Section III-D and the
binary labels transformation mentioned above, we construct
the datasets to train the affect models. As mentioned before,
to split the gameplay sessions, we use overlapping windows of
length 1, 3, and 5 seconds with sliding step 0.5 seconds. Table
II presents the cardinality of the datasets for the two games and
different windows’ length. To evaluate models’ performance,



TABLE III
THE EFFECT OF α PARAMETER ON STUDENTS’ AVERAGE ACCURACY (%)

ACROSS THE TWO DATASETS AND THREE TIME WINDOWS.

Survival Shooter
1 second 3 seconds 5 seconds

Majority Class 52.5 52.9 53.3
Teacher 70.0 68.8 73.4
Student (α = 0.2) 67.0 65.2 66.6
Student (α = 0.5) 71.2 74.3 71.1
Student (α = 0.8) 68.5 70.2 74.3

Space Maze
1 second 3 seconds 5 seconds

Majority Class 52.7 52.9 52.3
Teacher 71.9 73.3 70.8
Student (α = 0.2) 75.6 66.0 56.4
Student (α = 0.5) 74.8 75.1 62.9
Student (α = 0.8) 76.4 70.1 73.5

we follow a 5 fold cross-validation scheme. When splitting the
dataset, we do not include sessions from the same player in
both training and testing data. We also use 10% of the training
data as a validation set to activate early stopping criteria and
avoid models overfitting. Specifically, the training stops after
15 epochs without loss improvement on the validation set. At
this point, we should emphasize that all the employed models
of affect are evaluated using precisely the same data, i.e. the
training, validation and test sets are the same for all models.

B. Teacher’s Impact on Student’s Performance

We start by investigating the impact of the teacher on
the performance of the student model as determined by the
parameter α in Eq. (2). Initially, we train the teacher using
privileged information for gameplay footage windows of 1, 3,
and 5 seconds. After training the teacher models, we use their
probabilistic predictions to train the student models fed only
with gameplay footage frames. We train the student models
using three different values for parameter α: α = 0.2, 0.5,
and 0.8. By increasing the value of α, we force the student
model to weigh more the predictions of the teacher and pay
less attention to ground truth labels.

Table III presents the results of this investigation. For both
datasets, there is a value for parameter α, which results in
student models that achieve higher accuracy than the teacher,
irrespectively of the gameplay footage window length. We
observe, however, that varying the value of parameter α yields
fluctuations in the performance of the student, especially in
longer time windows. For α = 0.5 and 0.8, the student
achieves the best accuracy, i.e. when the teacher’s predictions
are weighted more than or equal to the ground truth labels.
That indicates that privileged information encoded in teacher’s
predictions can effectively improve the students’ training.

Based on these results, we can conclude that α is an impor-
tant parameter, which, when appropriately set, yields student
models that outperform the teacher. Most importantly, student
models achieve that level of improvement without access to
privileged information; they make predictions exploiting only
that information available in the wild. In other words, the

student models can take advantage of privileged information
captured in laboratory conditions to generalize in real-life
scenarios where privileged information is not available.

C. The Importance of Privileged Information

In a second set of experiments, we investigate the impact of
privileged information on building accurate models of affect.
As mentioned before, the student models make predictions
using solely information that is available in the wild; in our
case, the frames of gameplay footage that we process as RGB
pixels. We first compare the student models’ accuracy against
the accuracy of a pixel-based model that uses as input the
same information as the student models. Second, and more
importantly, we compare student models built to operate in
the wild against a fusion model that uses all information
modalities captured in laboratory environments for training
and testing. For the following experiments, we use α parameter
values that yield the most accurate student models based
on the sensitivity analysis of the previous section. Also, we
run 3 times the 5-fold cross-validation scheme, with different
training/validation/testing data splits and models initialization,
to collect statistics regarding the performance of the models.
As a baseline performance, we also report the accuracy of
a dummy classifier, denoted as majority class, which always
outputs the most frequent class in the training set. The results
for these comparisons are presented in Fig. 4.

For the SS dataset, the fusion model achieves the best
accuracy for two out of the three gameplay footage window
lengths, specifically for 1 and 3 seconds. For 5 second
windows, the student model performs better than all other
models on average, followed by the pixel-based model. The
accuracy, however, of the pixel-based model seems highly
dependent on the window’s length since we observe large
fluctuations between 1, 3, and 5 second windows. For all
window lengths, the student is the only model that consistently
achieves accuracy very close to (or even better than) that of the
fusion model, despite using only RGB gameplay footage pixels
for making predictions. At the same time, and in contrast to the
pixel-based model, the student’s accuracy is robust to window
length changes. While the pixel-based and the student models
use the same kind of information for making predictions,
the latter exploits privileged information and achieves higher
accuracy on average across all 3 different window lengths.

For the SM dataset and all window lengths, the fusion and
the student are the two best performing models. The student
model achieves higher accuracy than the fusion model for 1
second window length, despite utilising only a subset of the
modalities of the fusion model. The performance of the pixel-
based model presents smaller fluctuations compared to the SS
dataset. However, it achieves lower accuracy than the student
model for all settings, even though both models use the same
information for making predictions.

To summarize, the student is the only model that consis-
tently achieves average accuracy values close to or even higher
(for 2 out of 6 scenarios) than those of the fusion model. We
observe that behaviour across all scenarios tested, indicating
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Fig. 4. Comparison of the employed models on the two datasets and different
time windows, in terms of average accuracy and 95% confidence intervals
from running 3 times the 5-fold cross-validation scheme.

that the LUPI paradigm can provide the means for building
accurate models of affect that operate in the wild. Moreover,
the student and the pixel-based models use the same kind
of information for making predictions. The student, however,
appears more robust across different scenarios and achieves
higher average accuracy for most settings.

VI. DISCUSSION

Testing affect models in the wild comes with costs associ-
ated primarily to affect sensing. One would assume that if an
affect model has access to fewer modalities during testing in
the wild (e.g. due to hardware/software failure or even due to
the unavailability of sensors) the result will be detrimental for
its accuracy. Surprisingly, however, the results obtained from
this initial study suggest otherwise. Learning using privileged
information via the LUPI paradigm [8] seems to enable affect
models to operate in the wild—having access only to a limited
set of modalities; in this study merely pixels—without an
actual cost in terms of performance. Our findings suggest that
LUPI models can perform equally well to fusion models that
consider all modalities during both training and testing. Most
importantly via LUPI affect models we gain on accessibility,
cost, intrusiveness, and privacy, bringing affective computing
a decisive step closer to real-world settings.

A key characteristic of the domain of games generally—
and the two games tested specifically—is that the modality of

gameplay footage is a very powerful predictor of arousal, as
indicated by earlier studies [9], [10]. As a result the student
model benefits to a certain yet limited degree by additional
modalities. Results obtained in this paper show that pixel-
based arousal models in some experimental settings appear
to perform equally well, on average, to the student model or
even to the fusion models. This domain characteristic does
not undervalue the contribution of LUPI, however, as student
models yield on average higher or similar accuracies to pixel-
based models. Most importantly for the proposes of this study,
the student models perform equally well to the fusion models.

While the LUPI method appears to be robust across the
modalities and test beds examined in this paper, our hypothesis
that privileged information is beneficial for multimodal affect-
based interaction needs to be tested further. In particular,
we plan to employ variations of the method across differ-
ent affective corpora—within games [44] and beyond [45]—
that contain dissimilar modalities of user input and various
emotional labels. Even though standard convolutional neural
networks appear to be performing well in this and earlier
studies [9], [10], our plan is to test a number of different deep
learning models for potentially improving the performance of
LUPI models. Another possible extension of this work is to test
and compare ordinal learning methods [43], [46] for deriving
models of affect through privileged information.

VII. CONCLUSIONS

In this paper we introduce the notion of privileged infor-
mation for building models of affect. Our hypothesis is that
learning using privileged information can aid affect models to
leave the lab, be tested and perform well in real-world settings.
To test our hypothesis we used an affect corpus from two
different game environments that contains 4 modalities of user
input: game telemetry data, heart rate, electrodermal activity
and the pixels of the gameplay footage. We consider the first 3
modalities as privileged information (i.e. only available during
data collection) and assume that the fourth modality (i.e.
pixels) is available both during training and testing. The core
results of this initial study suggest that arousal models trained
with the privileged information of the three user modalities
can ignore them during testing and perform equally well to
fusion arousal models that consider all modalities. The findings
of the paper bring affective computing one step closer to
realising affect interaction in the wild. Privileged information
affect models do not require access to costly, intrusive, or
impractical modalities when tested in the wild, and they can
still operate equally well to models that consider all this
additional information.

The proposed method has direct applications to any affect
modelling task that considers multimodal data and needs
to run in the wild. Potential applications include (but not
limited to) driver-assistive systems, affective robots, affect-
aware recommender systems, and health applications at home
such as stress monitoring and seizure detection.
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