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Abstract—The laborious and costly nature of affect annotation
is a key detrimental factor for obtaining large scale corpora
with valid and reliable affect labels. Motivated by the lack of
tools that can effectively determine an annotator’s reliability, this
paper proposes general quality assurance (QA) tests for real-time
continuous annotation tasks. Assuming that the annotation tasks
rely on stimuli with audiovisual components, such as videos, we
propose and evaluate two QA tests: a visual and an auditory QA
test. We validate the QA tool across 20 annotators that are asked
to go through the test followed by a lengthy task of annotating
the engagement of gameplay videos. Our findings suggest that the
proposed QA tool reveals, unsurprisingly, that trained annotators
are more reliable than the best of untrained crowdworkers
we could employ. Importantly, the QA tool introduced can
predict effectively the reliability of an affect annotator with
80% accuracy, thereby, saving on resources, effort and cost, and
maximizing the reliability of labels solicited in affective corpora.
The introduced QA tool is available and accessible through the
PAGAN annotation platform.

Index Terms—affect annotation, reliability, annotator test,
engagement, dataset, inter-rater agreement

I. INTRODUCTION

Revealing and capturing the ground truth of affect is ar-
guably the fundamental challenge of affective computing.
Over the 20 or more years of the existence of the field,
several approaches have been introduced as a response to this
challenge. Generally speaking, those vary between tools that
attempt to minimize inter-rater agreement (e.g. [1]–[4]) and
data processing methods that attempt to derive the ground truth
from any affect labels provided [5]–[7]. Among the several
factors that determine the reliability of affect annotation, of key
importance is the reliability of the annotator per se. This can
be caused by lack of understanding of the task or annotation
labels, inattentiveness, poor or faulty equipment, and many
more uncontrollable parameters when dealing with in-the-wild
settings. In human-computer interaction tasks, the potential
of any tool is often established through Quality Assurance
(QA) tests, since the intended quality is described by the tool’s
designer and can be assessed. However, in affective computing
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it is not trivial to assess the quality of a completed annotation
task (e.g. a trace or a label) as the ground truth of affect is not
available; it is derived from the annotators themselves. Hence
measuring any deviation from an assumed (and likely moving)
goal is ill-posed by definition.

Motivated by the lack of tools for assessing the quality of
affect annotators, this paper introduces a set of accessible QA
tests that can determine the reliability of an annotator rapidly
and effectively. We focus on audiovisual content annotation
and we use RankTrace [3] from the PAGAN [8] suite of con-
tinuous annotation tools. To assess the reliability of annotators
on an audiovisual task, our QA tools require annotators to
first annotate two videos containing an objective task with
a predetermined ground truth. Each video has a duration of
1 minute and tests the annotators’ ability to annotate visual
stimuli (visual QA test) and aural stimuli (auditory QA test).

The QA tests introduced are tested in a real-world use-
case regarding the time-continuous annotation of engagement
in gameplay videos. To test these QA tools, we employ and
compare two groups of annotators with different levels of
annotation expertise. The first group consists of 10 trained
affective computing researchers from the University of Malta.
The second group are 10 untrained crowdworkers employed
from Amazon’s Mechanical Turk (MTurk). In the protocol
reported in this paper, we first ask participants to go through
our two introduced QA tests. We then ask them to annotate
the engagement levels of 30 gameplay videos. Based on the
data obtained, we test three hypotheses: (a) that the trained
annotators are more reliable than the untrained crowdworkers;
(b) that for audiovisual annotation tasks it is necessary to
assure the reliability of annotators through both auditory and
visual QA tasks; (c) that the performance of annotators on the
objectively-defined tests can be a reliable predictor of their
reliability in their followup affect annotation tasks.

Our findings validate all hypotheses and suggest that (a)
annotator training is critical for obtaining reliable labels of
affect; (b) each of the two QA tasks can reveal unreliable
annotators which may or may not overlap; and (c) that short
and trivial annotator tests can be used as accurate predictors
of affect annotator quality with up to 80% accuracy. The
benefit of the proposed tools is that they are easily deployed
by researchers and rapidly executed by annotators, thereby
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reducing the costly and laborious nature of annotation. The
QA tools can likely detect unreliable annotators, which can
increase the overall reliability of the affect labels obtained. The
introduced annotator reliability tests are accessible through the
training [8] tool for the rapid assessment of participants of any
audiovisual affect annotation task.

II. BACKGROUND: AFFECT ANNOTATION RELIABILITY

Arguably one of the most crucial steps in any data labeling
process is the choice of the annotation task, which, in turn,
highly affects the quality of the solicited dataset. The task
selection process is relatively straightforward when the anno-
tations can be defined objectively (e.g. a cat vs a dog class
label) since a single best response is presumed to exist for
each sample. However, when it comes to subjective annotation
tasks such as arousal or valence traces, the ground-truth signal
is ill-posed due to inherent subjectivity bias of annotators and
their potential systematic reporting errors [5], [6].

Due to the subjective nature of emotion, several studies
in affective computing focus on the assessment of a label’s
validity and reliability [9]–[11]. The validity of an affect label
can be defined as the degree to which the annotation measures
the phenomenon we claim it does and it can be quantified
using cross-validation [5] or physiological measures [12]. The
reliability of an affect label instead (the focus of this paper)
is usually quantified through variant measures of inter-rater
agreement.

As noted above, the absence of an objective ground truth
signal for comparison renders the assessment of a human
annotator’s reliability a notoriously difficult challenge. In the
literature, the dominant method for determining the quality
of an annotator is to compare their affect traces with those of
other annotators on the same task using a number of inter-rater
agreement measures (see Section V-B). Indicatively, Aljanaki
et al. [13] employed Cronbach’s α on crowd-sourced affect
labels to remove annotations that fall out of the majority
cluster. Kossaifi et al. [14], instead, use Pearson’s correlation to
improve the reliability of the annotations obtained by removing
low-agreement annotations. Yannakakis et al. [4] measured
inter-annotator agreement for ordinal and interval-based hu-
man emotion labels by employing Krippendorff’s α whereas
Devillers et al. [15] used Cohen’s κ coefficient along with a
thresholding scheme forming a consensus among annotators
and discarding outliers. Nicolaou et al. [16] introduced the
signed agreement metric for evaluating the accordance of
continuous valence annotations. Expanding on this, Booth and
Narayanan [7] introduced an ordinal measure of agreement,
signed differential agreement (SDA), and examined several
agreement metrics in a controlled study with a predetermined
and known ground truth.

Similarly, selecting the right agreement measure is a chal-
lenging endeavor. This is especially true in continuous and un-
bounded affect signals, such as those generated by RankTrace
[3], as annotators will likely leave a trace that embeds their
own subjective and reporting biases. Building on recent de-
velopments in ordinal affect annotation [5]–[7], [11] we argue

(a) Visual QA Task (b) Auditory QA Task

Fig. 1: User interface for the QA tests used in this study.
The two tests introduced utilize RankTrace [3] and are imple-
mented through the PAGAN framework [8].

that agreement measures for affect traces should consider the
annotator’s consensus in terms of the trace’s relative changes
instead of their agreement in terms of the trace’s absolute
values. In contrast to the aforementioned studies, in this paper
we compare the performance of trained researchers against
untrained crowdworkers across several reliability measures and
examine the capacity of our introduced tools to predict the
reliability of an annotator.

III. QUALITY ASSURANCE TESTS FOR AUDIOVISUAL
ANNOTATION TASKS

Below we outline the two Quality Assurance (QA) tools
we introduce for testing the reliability of annotators (see Fig.
1): one visual QA test and one auditory QA test. The QA
tests are founded on the premise that the audio or visual
content used as stimuli are (a) simple to annotate in terms
of their labels, and (b) fully controlled by the researchers to
provide an objective ground truth. The stimuli in both QA
tests listed below are in video format, and are created within
the Processing environment1. The videos, ground truth signal,
and instructions on integrating these with PAGAN [8] are
available online2 for researchers interested in time-continuous
annotation tasks.

The QA videos are uploaded and made available through
the online PAGAN annotation interface [8], following the
RankTrace annotation protocol. In RankTrace, participants
can modify their perceived affect assessment in real-time
(through the scroll-wheel of the mouse) while they watch a
video recording and reacting to stimuli as they occur. The
entire annotation trace is visible to the participant through the
interface (bottom of the screen in Fig. 1a), scaling it on the
x-axis as the video continues. The resulting annotation traces
collected via PAGAN are time-continuous and unbound, which
we process through min-max normalization for the purposes
of this paper (see Fig. 3).

We argue that the use of these QA tests is beneficial for
minimizing computational and human (annotator) resources
of any affect annotation task while maximizing the reliability

1https://processing.org/
2https://github.com/institutedigitalgames/pagan qa tool sources



of the affect labels obtained. Our hypotheses are supported by
the findings of this paper, detailed in Section VI.

A. Visual QA Test

Inspired by [7], our first test in this QA toolkit (see
Fig. 1a) consists of a purely visual task where the annotator
is requested to annotate the change of brightness of a green
screen. Before the test starts, the user is prompted with the
following instructions: “Please use the scroll-wheel to indicate
the changes in the level of brightness while watching the
video”. The annotator uses a mouse wheel to scroll up or
down to indicate the change of color brightness observed.

The 1-minute video used as a stimulus has a predetermined
pattern of brightness changes. The green color intensity value
ranges between 25 and 255, and its fluctuation changes are
controlled by the script that produces the video. The min-max
normalized fluctuations of green color intensity are shown in
the solid black line of Fig. 3a. The red and blue channels
remain static at values of 20 and 12, respectively. This results
in frames where the screen is dark and progressively more or
less green, avoiding issues in perceptible brightness due the
RGB file format. We carefully selected this test as its objective
nature and low cognitive load allows us to effectively test
the annotator’s ability to respond to visual stimuli and their
response time.

B. Auditory QA Test

Based on the premise of the visual QA test, and due to the
nature of audiovisual stimuli used in the actual annotation task
(see Section IV-B), we present the annotator with an auditory
QA test (see Fig. 1b). The 1-minute video used as a stimulus
for this task has no visual component (showing a black screen
with a message, as in Fig. 1b) and a monotonic audio signal
with a dynamically changing pitch. The pitch ranges between
50 and 470 Hz, and the sound is produced by a triangle wave
oscillator. As with the visual task, the ground truth of the
pitch variation is normalized and illustrated as a black solid
line in Fig. 3b. Once again, the annotator is requested to use
RankTrace [3] and is prompted with the following instructions
before the QA task: “Please use the scroll-wheel to indicate
the changes in the level of Pitch while watching the video”.

This task is designed to test the annotator’s ability to react
to purely aural stimuli, and to ensure that the annotator is
using the proper setup to detect even low-pitch sounds heard
in a video. We argue that these two tests, combined, cover
both major types of audiovisual stimuli during the annotation
process. Testing both types in isolation allows us to ensure
the annotator’s reliability on both auditory and visual stimuli
independently.

IV. USE CASE: ANNOTATION OF ENGAGEMENT IN
AUDIOVISUAL GAME STIMULI

To evaluate the QA tools described in Section III, we
employ a real-world annotation task relevant to our ongoing
research goals. It is worth noting that the QA tools were
developed precisely to address challenges we encountered

Fig. 2: Screenshots from the 30 different FPS games annotated
for engagement in this paper. List of game titles: (1) Apex Leg-
ends; (2) Battlefield 1942; (3) Blitz Brigade; (4) Borderlands
3; (5) Corridor 7; (6) Counter Strike 2016; (7) Counter Strike
2018; (8) Counter Strike 2019; (9) Counter Strike Go; (10)
Doom; (11) Dusk; (12) Far Cry 1; (13) Fortnite; (14) Heretic;
(15) Hrot; (16) Insurgency; (17) Modern Combat: Sandstorm;
(18) Medal of Honor 2010; (19) Medal of Honor 1999; (20)
Medal of Honor: Pacific Assault; (21) Operation Bodycount;
(22) Outlaws; (23) Overwatch 2; (24) PUBG; (25) Superhot;
(26) Team Fortress 2; (27) Void Bastards; (28) Wolfenstein
3D; (29) Wolfenstein New Order; (30) Wolfram Wolfenstein.

during this use case, rather than the other way around. The goal
of this annotation task is to produce reliable time-continuous
traces of a player’s engagement while playing a first-person
shooter (FPS) game via third-person annotation. We discuss
the stimuli (gameplay videos) in Section IV-A and the data
collection protocol in Section IV-B.

A. FPS Game Videos

For the purposes of this study we selected gameplay videos
from 30 different and popular FPS games (see Fig. 2 for the
full list of games) as elicitors of engagement. The choice of
FPS games and videos was based on several criteria. First,
we wish to ensure that these games cover a wide range
of audiovisual stimuli for engagement annotation varying in
graphical style (i.e. photo-realistic, retro, cartoon-like, etc.)
and gameplay modes (i.e. battle royale, campaign, deathmatch,
etc.). Second, we ensure there is no player or user commentary
present in the video and that only the sound of the game
can be heard during the video playback. Finally, we ensure
that there is no video with more than 15 seconds of non-
gameplay footage (e.g. menu screens, cut scenes or transition
animations). The resulting game videos always have a duration
of 1 minute.

In order to provide annotators with a variety of stimuli, each
session had 30 gameplay videos (one per FPS game) shown
to the players in sequence. Session 1 included therefore 30
videos in the form of a 30-minute sequential annotation task
(with videos in random order, see Section IV-B). Session 2
included a different set of 30 gameplay videos (from the same



30 games shown in Fig. 2). We consider videos from Session
2 as independent stimuli from those of Session 1, despite
originating from the same game, since the events depicted
(and thus the perceived player engagement) are different—and
differently timed—between gameplay videos from the same
FPS game, or similar games. With two sessions of independent
stimuli (Session 1 and 2), we produce a corpus of gameplay
videos of a total duration of 60 minutes (i.e. 30 minutes for
each session).

B. Data Collection Protocol

To accomplish our overarching goal of annotating gameplay
videos in terms of engagement, we implemented the following
protocol for both experts and crowdworkers.

1) Participants: Experts were members of the University
of Malta (either research staff or M.Sc. students), with a total
of 10 experts reported in this paper. All experts performed
the annotation in the same room and light conditions, using
the same machine and input/output devices (screen for visual
stimuli, headphones for aural stimuli, and a mouse with a
scroll wheel for annotation). Researchers involved in this
work (all of them authors of this paper) were always present
to introduce the annotation task and answer any questions
during the annotation period. To gather richer data on the
experience, expert annotators answered some questions and
gave their feedback after the task was completed; this may be
processed and reported in future work. On the other hand,
crowdworkers were recruited through Amazon Mechanical
Turk (MTurk), and were required to use headphones and a
mouse with a scroll wheel to take part in the experiment.
Crowdworkers were redirected to the same online PAGAN
website as experts (more on this below) but performed the
annotation task at their own pace, a location and time of
their choice, and using their own equipment. A total of 25
crowdworkers were recruited to annotate a variety of sessions
(each totalling a 30-minute annotation task) but only the 10
most reliable crowdworker annotators were retained after data
cleanup due to missing annotations and other technical issues.
The 10 crowdworkers selected are the ones yielding the highest
reliability—measured through the average signed differential
agreement [7]—during the two QA tests. Five of the experts
and five of the crowdworkers annotated videos from Session
1 and the remaining 5 experts and 5 crowdworkers annotated
videos from Session 2.

2) Annotation Process: Each participant was allocated a
Session (1 or 2) and first performed the visual QA test
(Section III-A). followed by the auditory QA test, as described
in Section III-B. All participants performed the two QA
tasks in the same order. After the completion of the QA
tests, participants were provided the following definition of
engagement: “A high level of engagement is associated with
a feeling of tension, excitement, and readiness. A low level
of engagement is associated with boredom, low interest, and
disassociation with the game.”. Participants were then asked to
annotate 30 gameplay videos from the FPS corpus described
in Section IV-A. Unlike the QA tests, the order of these 30

videos was randomized for each participant. The random order
was imposed to minimize participants’ habituation effects. The
randomization of stimuli order, however, poses a number of
challenges in deriving a ground truth on the same stimulus
between participants since each video may have been seen
early on for one participant (i.e. where the annotation task
may still be hard to grasp) or late (i.e. where user fatigue
may occur). Participants could pause the video, which stopped
the annotation process, and they could opt to start the next
video once the previous was completed. Once the engagement
annotation was completed (i.e. a task lasting approximately 30
minutes per participant), the participant was thanked for their
participation and exited.

V. HYPOTHESES AND RELIABILITY MEASURES

Using the affect annotation task discussed in Section IV,
we collected 30 engagement traces per participant, as well
as traces for the two QA tests (visual and audio). Based on
the designed experimental protocol we attempt to validate the
following three hypotheses (H):
H1 Experts offer more reliable annotation data than crowd-

workers.
H2 Two QA tests are necessary to assess the reliability of

annotators in an audiovisual annotation task.
H3 The QA tests can early-detect unreliable annotators prior

to any affect annotation task.
To test our hypotheses, we require good approximations

of the ground truth and appropriate measures of inter-rater
reliability. Section V-A outlines the method we followed to
derive the ground truth from the obtained traces. The ground
truth enable us to measure our annotators’ reliability via the
metrics presented in Section V-B.

A. Ground Truth

A strength of the QA tools proposed in this paper is that the
ground truth is known in advance: brightness or audio pitch
fluctuation is controlled by the researcher a priori. Therefore,
deriving inter-rater reliability amounts to finding the agreement
from this known trace.

While the QA tests come with an objective ground truth
trace to compare against the annotators’ traces, the gameplay
videos do not. Hence, for the corpus under consideration
we follow current practices [6], [17]–[19] and derive a gold
standard signal (i.e. the median engagement annotation trace)
which we consider the ground truth of engagement. We
calculate the gold standard signal separately for each session,
as they contain different video clips, as well as separately for
each group (experts vs crowdworkers). Importantly, when we
compare an annotator to their group’s gold standard signal, we
ensure to leave their data out of the gold standard calculation
to eliminate any data leakage. This means that for a group of
5 annotators of the same video, we derive five gold standard
signals, one per annotator. This is repeated five times, and we
report the average and deviation from those five calculated
reliability metrics (one per left-out participant).



(a) Visual QA Task (Experts) (b) Auditory QA Task (Experts) (c) Engagement Traces (Experts)

(d) Visual QA Task (Crowdworkers) (e) Auditory QA Task (Crowdworkers) (f) Engagement Traces (Crowdworkers)

Fig. 3: Annotation traces (various colored lines) for the expert (top) and crowdworker (bottom) annotators for the two QA tasks
(including all participants) and for an indicative use-case of engagement annotation with the Apex Legends clip in Session 2
(including 5 expert and 5 crowdworker traces). The gold standard signal (GT) is the black solid line, derived from the controlled
fluctuations in stimuli for QA tasks and averaged from the golden standard signals for engagement tasks (see Section V-A).

B. Reliability Metrics

Based on a recent analysis of existing agreement metrics
[7], we employ the following statistical measures to calculate
annotator reliability in this study:

• Cronbach’s ααα [20] is a widely used group measure of in-
ternal consistency or reliability of a test or questionnaire.
It estimates the extent to which a set of items measures a
single, uni-dimensional latent variable, and lies in [0, 1];
higher values indicate higher agreement.

• Krippendorff’s ααα [21] is a generalization of several
inter-rater reliability coefficients, including Cohen’s κ,
and is used to measure the agreement between multiple
raters who categorize a set of items. It is applicable to any
number of raters, levels of measurement (nominal, ordi-
nal, interval, ratio), and incomplete or missing data. Its
values range between [0, 1], with higher values indicating
higher agreement between raters.

• Cohen’s κκκ [22] is a pairwise measure of inter-rater
reliability, which assesses the agreement between two
raters who independently classify a set of items into dis-
crete categories. It considers the possibility of agreement
occurring by chance and lies within [−1, 1], with higher
values indicating higher agreement between raters.

• Signed Differential Agreement (SDA) [7] is a pairwise
agreement measure which aims to capture consensus in
signal shape and is invariant to perceptual biases. It can
be used on both ordinal and interval continuous traces.
SDA values lie within [−1, 1] and are computed based
on number of times the signs of two signals agree.

VI. RESULTS

In this section we attempt to test the three hypotheses
presented in Section V. To do this, we assess participants’
reliability with regards to the known ground truth signals in the
QA tests and the derived gold standard signals in the subjective
annotation tasks of gameplay engagement (see Section V-A).
All reported significance tests are measured at 95% confidence
(p < 0.05).

A. H1: Reliability of Experts vs. Crowdworkers

To test H1, we compare the performance of the 10 expert
annotators against that of the 10 crowdworkers split between
the two annotation sessions. Reliability here is measured using
all four metrics outlined in Section V-B: SDA, Cohen’s κ,
Cronbach’s α and Krippendorff’s α.

1) QA Tests: Figure 3 shows the normalized traces of
all annotators on the visual and auditory tests. It becomes
visually apparent that expert annotators—compared to the
MTurk workers—not only agree more with each other but they
also tend to follow the ground truth much closer. The expert’s
agreement seems to be strong with regards to both the trace
trend (relative change) and the trace’s values.

The visual inspection of Fig. 3 is in alignment with the
reliability values obtained across the four measures considered
for the two tests (see Table I). It is clear that the expert group
of annotators performs better in terms of reliability across
all four measures. Importantly, in terms of SDA, the expert
group of annotators have a significantly higher mean SDA than
the crowdworkers in both tests. A similar pattern is observed
when Cohen’s κ and Krippendorff’s α are used as measures
of reliability. The κ values of the experts indicate once more
that the trained group of annotators is more reliable by a



TABLE I: Annotator reliability across the two QA tests with
95% confidence intervals for pairwise agreement measures.

Visual QA Test
Metric Experts Crowdworkers
SDA 0.09± 0.15 −0.30± 0.13

Cohen’s κ 0.27± 0.14 0.00± 0.09
Cronbach’s α 0.98 0.96

Krippendorff’s α 0.62 0.16
Auditory QA Test

Metric Experts Crowdworkers
SDA 0.20± 0.25 −0.34± 0.09

Cohen’s κ 0.41± 0.18 0.00± 0.07
Cronbach’s α 0.99 0.97

Krippendorff’s α 0.73 -0.13

considerable magnitude. Krippendorff’s α values reveal the
same trend as reliability values for the experts are higher than
0.62 for both the visual and the auditory tasks whereas they
reach levels of no correlation (α = 0) [21] among annotators
within the group of crowdworkers. While Cronbach’s α values
indicate a similar trend in both QA tests, both groups achieve
very high reliability scores in contrast to the other three
metrics. This result is in alignment with the findings of
[7] suggesting that Cronbach’s α does not capture well the
structural similarities of continuous annotations.

This analysis validates H1 both visually and numerically.
Trained experts are likely more reliable annotators—compared
to the most reliable MTurk crowdworker annotators—when
they are tasked to annotate the objective ground truth of the
two tests we introduce in this paper. While this finding is
not surprising, it indicates that the QA tools introduced offer
useful ways of detecting such experience gap.

2) Engagement Annotation: Following the comparative
analysis of the two annotator groups on objectively-defined
tasks, we compare their reliability to annotate engagement.
We focus on SDA values below, as it specifically designed
for this task of (relative) time-continuous annotation and is
aligned anyway with other reliability metrics (except perhaps
Cronbach’s α). For each of the 30 annotated videos we
calculate the SDA value of each annotator from the video’s
ground truth of engagement. As a reminder, the ground truth
of each video for each group of annotators (i.e. expert vs.
crowdworkers) is derived as the median engagement trace
excluding the annotator that is examined for reliability. The
result of this analysis is 150 SDA values per annotator group
(i.e. 30 videos times 5 annotators per group).

Figure 4 illustrates the distribution of SDA values for the
two annotator groups. Clearly, the expert group manages to
annotate engagement with higher degrees of reliability on av-
erage. Specifically, the expert group of annotators yield higher
agreement with their gold standard signal (0.304 ± 0.196)
compared to the crowdworker group (−0.26±0.04). A paired-
sample t-test between the two distributions reveals that the
difference of means between the two groups is significant
(p < 0.05). Similar results are obtained with the other reliabil-

Fig. 4: Histogram of SDA values for the expert and crowd-
worker annotators measured across both sessions of engage-
ment annotation tasks.

ity measures (Cohen’s κ, Krippendorff’s α) and are omitted for
space considerations. Our findings from this statistical analysis
validate H1 once more; this time for affect annotation tasks.

B. H2: Necessity of the Two QA Tests

A core hypothesis when designing the QA tasks was that
their combination covers both major types of audiovisual
stimuli during the annotation process (see Section III-B). Since
annotators may not pay attention to visual stimuli (e.g. due to
small or inappropriate monitors) or audio stimuli (e.g. due
to muted or problematic speakers), both a visual QA test
and an auditory QA test is necessary. From this analysis, we
rephrase H2 as follows: we expect that not all participants that
perform reliably in the visual QA task perform similarly in the
auditory QA task and vice versa. To test this, we measure the
Pearson’s correlation (ρ) between each annotator’s SDA score
in the visual QA task with the same annotator’s SDA score
in the auditory task. For all expert annotators, the correlation
between reliability in either QA task is high (ρ = 0.89) and
statistically significant: this means that participants which were
good at one task were also good at the other task. This is not
surprising since participants were given the same equipment,
had experience in such annotation tasks, and we expect that
they were attentive to the task due to the laboratory setting
in which data was collected. On the other hand, we note a
negative correlation between visual QA task reliability and
auditory QA task reliability for crowdworkers (ρ = −0.29)
although the correlation is not statistically significant. While
both tasks had low SDA scores for crowdworkers on average
(see Table I), the low correlation found above indicates that
some crowdworkers may be more attentive to visual stimuli
than audio stimuli (perhaps due to having a sub-par audio
setup or listening to music as they work) and vice versa.
While perhaps one QA test would suffice for annotation
tasks in controlled settings (due to high correlations between



Fig. 5: Scatter plot of annotators’ mean SDA values on the
QA tests versus their corresponding mean SDA values across
the engagement tasks (including 95% confidence intervals).
We use the class split criterion of 0 (i.e. 50% agreement)
on the mean SDA value of the QA tests to classify between
reliable and unreliable annotators. The green quadrants contain
annotators the tool correctly classified as reliable or unreliable
affect annotators.

QA tests among experts), the above analysis validates H2:
having two QA tests (one for visual attention and one for
aural attention) is necessary when dealing with in-the-wild
uncontrolled conditions—such as crowdwork—since each QA
test returns very different reliability scores for the same user.

C. H3: Predicting an Annotator’s Reliability

For the purposes of testing H3 we build on certain assump-
tions regarding SDA scores and identify negative scores as
unreliable. For each participant, we calculate the mean SDA
of the visual and auditory QA tasks. We consider an annotator
unreliable if the mean SDA on these two QA tasks is below
0. To validate H3, we test whether this criterion suffices to
identify unreliable annotators for the engagement annotation
use-case. To assess unreliable annotators for engagement, we
calculate the mean SDA score for all 30 annotation tasks that
this participant performed. Importantly, for each gameplay
video we calculate this participant’s SDA from the golden
standard which is derived without this participant’s trace to
avoid data leakage (i.e. the leave-one-participant out method as
described in Section V-A). We consider a participant unreliable
in the engagement annotation task if their mean SDA score
across these 30 videos is negative. By converting these SDA
scores into reliable/unreliable labels, we derive Fig. 5. If we
use the QA tasks’ SDA to predict unreliable annotators in the
engagement annotation, we can treat Fig. 5 as a confusion
matrix: unreliable annotators in QA tasks that are reliable
in engagement annotation tasks would be false positives,
while reliable annotators in QA tasks that are unreliable in

engagement annotation tasks would be false negatives. It is
evident that all crowdworkers are unreliable both in the QA
tasks and the engagement tasks; all 10 crowdworkers are
true negatives. Among expert annotators, three are unreliable
in QA tasks (all in Session 2) while remaining reliable in
the engagement QA task (false negatives). Only one false
positive exists among experts, which has a mean SDA on
the engagement task marginally below the threshold. This
amounts to a correct classification of 16 out of 20 annotators
in total (80% accuracy). While H3 is difficult to validate
experimentally (see also Section VII), the above analysis
indicates that reliability on QA tests can be a good predictor
for general reliability in affect annotation tasks.

VII. DISCUSSION

This paper introduced two simple tools for assessing the
reliability of annotators rapidly. Our findings suggest that,
unsurprisingly, a trained group of annotators (with training
on affective computing and AI) perform significantly more
reliably than the best crowdworkers we could hire out of 25.
Results also suggest that both tools introduced have a great
predictive capacity assessing an annotator’s reliability in affect
annotation tasks, with an accuracy of 80% in this pilot study.

This study is presented as part of a larger affect annotation
experiment through which we solicit affect labels for FPS
games in vitro (lab) and in vivo (in the wild). The tests
introduced will be assessed on more annotators and annotation
tasks. We firmly believe, however, that the sample of 20
participants annotating 2 hours of audiovisual content suffices
for supporting the findings of this paper. More annotators and
annotation tasks would, in turn, provide more reliability data
for training larger models via supervised learning. It is also
our desire to test the degree to which the tests are robust
and generalizable across annotation domains and datasets
involving videos of people manifesting emotion individually
or in groups as in [23].

Our analysis has validated all three hypotheses we made
in this paper. As H1 suggests we expected that crowdworkers
would not be as reliable as experts and this was evidenced
both in QA tests and ensuing tasks that relied on a golden
standard signal from the respective groups’ annotations. We
took several steps to ensure the validity of our findings,
such as using a leave-one-participant-out to derive a golden
standard signal and reliability on an affect annotation task.
The validation of H3, however, relies on using certain SDA
values (below 0) as labels for annotator reliability. Additional
tests in upcoming work should explore appropriate thresholds
for filtering unreliable participants, and how gold standard
signals are affected by removing all traces originating from
such unreliable participants.

Another limitation of this work is that the specific properties
of the tools are not thoroughly examined and tested. In par-
ticular we did not experiment with different ground truths of
brightness and pitch and various lengths of the annotation task.
Observing the behavior of expert annotators vs. crowdworkers,
however, showcased (both qualitatively and quantitatively) that



the pattern of the objectively-defined ground truth we designed
seem to be independent of the reliability of an annotator.

It is worth noting that the QA tests introduced in this paper
are available online3 along with the ground truth (brightness
and audio pitch fluctuations) so that interested researchers can
implement them in their tests. The QA tool was implemented
through the PAGAN web annotation framework [8] which
allows researchers to create ad-hoc video annotation tasks. The
same repository provides instructions on how to re-implement
the protocol described in Section IV-B.

VIII. CONCLUSIONS

In this paper we introduced an annotator assessment toolkit
that can determine rapidly the degree to which an annotator is
reliable before they are requested to annotate affect. Building
upon existing annotation tools and signal processing methods,
we integrate two reliability tests composed of objectively de-
fined visual and auditory tasks within the PAGAN framework
[8]. We validate the tests across 20 annotators—10 experts
and 10 crowdworkers—and examine their capacity to capture
and predict the reliability of an annotator across a series of
engagement annotation tasks. Our findings suggest that the
expert annotators are superior—in terms of reliability across
four different measures—compared to the best crowdworkers
we could hire. Importantly, the introduced assessment tests
are capable of predicting the reliability of affect annotators
with 80% accuracy, and thereby constitute a valuable tool
for minimizing the resources required for building maximally
reliable affect corpora.

ETHICAL IMPACT STATEMENT

This paper contains a dataset of affect annotations collected
from participants in the lab, and through crowd-sourcing on
Amazon’s MTurk platform. Care was taken to ensure partici-
pants gave informed consent about the data collection process,
and any personally identifiable information was not stored in
the dataset. The dataset contains no potentially offensive data,
and followed our University’s ethics procedures. The dataset
and the tools built will also be made available to the public
for other potential studies and scientific reproducibility. To
the best of our knowledge, there is no significant potential
for the development of negative or deceptive applications
using our work, and will not exacerbate existing privacy or
discriminatory issues. The extent to which the results of this
paper are generalizable across multiple demographics is a
topic for future work as we expand on this dataset. The data
collection pipeline and analysis did not require the use of any
significant compute resources, both in terms of compute power
and time.
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