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Abstract—This paper proposes a paradigm shift for affective
computing by viewing the affect modeling task as a reinforcement
learning process. According to our proposed framework the
context (environment) and the actions of an agent define the
common representation that interweaves behavior and affect.
To realise this framework we build on recent advances in
reinforcement learning and use a modified version of the Go-
Explore algorithm which has showcased supreme performance
in hard exploration tasks. In this initial study, we test our
framework in an arcade game by training Go-Explore agents to
both play optimally and attempt to mimic human demonstrations
of arousal. We vary the degree of importance between optimal
play and arousal imitation and create agents that can effectively
display a palette of affect and behavioral patterns. Our Go-
Explore implementation not only introduces a new paradigm for
affect modeling; it empowers believable AI-based game testing
by providing agents that can blend and express a multitude of
behavioral and affective patterns.

Index Terms—Reinforcement Learning, Go-Explore, Arousal,
Affective Computing, Artificial Agents, Gameplaying

I. INTRODUCTION

Affective computing is traditionally viewed from an expert-
domain and supervised learning lens through which manifesta-
tions of affect are linked to ground truth labels of affect that are
provided by humans. Behavior and affect are either blended in
the form of hand-crafted rules [1], [2] or machine learned via
supervised learning methods [3]. While affect models designed
or built this way are linked to the context of the interaction,
they are often completely independent of the behavior of the
involved actors.

A recent (non-deep) reinforcement learning (RL) algo-
rithm, Go-Explore [4], showcased superb performance at hard
exploration problems with many states—such as complex
planning-based games—that most other deep learning methods
struggled with. In its application to the game Montezuma’s
Revenge (Parker Brothers, 1984), Go-Explore reached super-
human gameplaying performance. In part, this is achieved
by storing all visited game states and exploring from such
interim states rather than playing the game from the start [5].
Inspired by these recent breakthroughs in RL, we leverage the
capacity of Go-explore to introduce a paradigm shift for affect
modeling. We argue that viewing affect modeling as an RL
process yields agents (or computational actors) that manage
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to reliably interweave behavior and affect without necessarily
relying on affect corpora of massive sizes.

The proposed concept revolutionizes affective computing,
which traditionally attempts to model human affect in the
context of an interaction but largely ignores the affective
response to the actions of the involved (inter-)actors. Both
behavior and affect are blended in an internalised model that
associates an agent’s context (environment) and its actions
to both its behavioral performance and its affective state.
At the same time, we introduce a novel paradigm for RL
where the rewards are not only tied to a user’s behavior but
combined with rewards from annotations provided by the users
themselves (i.e. human affect demonstrations). According to
our approach, both behavior and affect can form reward
functions that can be experienced from RL agents that learn
to behave and express affect in various ways. The proposed
Go-Explore implementation is tested in a simple arcade game
featuring a rich corpus of self-reported traces of arousal.

Our key findings suggest that agents can be trained effec-
tively to behave in particular ways (e.g. play optimally with
super-human performance) but also behave so as they feel as
humans would in a particular game state. Beyond the proposed
paradigm shift in affective computing, our Go-Explore agents
offer insights on the relationship between affect and behavior
through their RL trained models. Importantly, RL agents that
blend behavior and affect can be used directly for believable
testing as such agents can simulate and express simultaneously
both behavioral and affective patterns of humans.

II. BACKGROUND

This section provides a brief overview of the related do-
mains of reinforcement learning, the Go-Explore algorithm,
traditional affect modelling via imitation learning and affect
modelling using reinforcement learning.

A. Reinforcement Learning and Go-Explore

Reinforcement learning approaches machine learning tasks
from the perspective of behavioral psychology, mimicking the
way animals and humans learn through receiving positive or
negative rewards for their actions [6]. Exploring state spaces
with sparse and/or deceptive rewards has been a core challenge
for traditional RL algorithms, as they suffer from issues
of detachment and derailment. Detachment occurs when an
algorithm forgets how to return to previously visited promising



areas of the search space due to exploration in other areas.
Derailment is a consequence of RL algorithms which do not
separate returning to states from exploring the search space.
This may result in potentially promising states that require
a long sequence of precise actions unlikely to occur under
exploratory conditions.

Go-Explore is a recent algorithm in the RL family [7]
which is explicitly designed to overcome the two aforemen-
tioned challenges. The algorithm was introduced with the aim
of improving RL performance in hard-exploration problems,
which tend to contain sparse or deceptive rewards. Go-Explore
has demonstrated previously unmatched performance in Atari
games [5], highlighting its ability to thoroughly explore com-
plex and challenging environments. In games with sparse
rewards (such as Montezuma’s Revenge), a large number
of actions must be taken before a reward can be obtained,
whereas deceptive rewards may mislead the agent and result
in premature convergence and therefore poor performance [8].
Go-Explore has been used for text-based games, capable of
outperforming traditional agents in Zork1 [9] and is able to
generalize to unseen text-based games more effectively [10].
The algorithm’s capabilities have also been demonstrated in
complex maze navigation tasks which could not be completed
by traditional RL agents [11]. Beyond playing planning-
based games with superhuman performance, Go-Explore has
been used for autonomous vehicle control for adaptive stress
testing [12], and as a mixed-initiative tool for quality-assurance
testing using automated exploration [13]. While Go-Explore
has proved to be a highly effective algorithm for behaviour
policy search, it has never been tested on affect modeling tasks.
This proof-of-concept paper introduces the first application
of the algorithm for modeling affect as an RL process and
blending it with behavior within a game agent.

B. Reinforcement Learning and Affective Computing

Traditionally, affect modelling [3] involves constructing a
computational model of affect that takes as input the context
of the interaction, such as pixels [14], [15], and multimodal
information about a user—including physiological signals
[16], facial expressions [17], [18] or speech [19]—and outputs
a predicted corresponding emotional state (i.e. the ground
truth of emotion). Given that affective computing relies on
a provided ground truth of emotion that is human-annotated,
affect detection is naturally viewed as a supervised learning
task [3]. Traditionally a dataset of user state-affect pairs is used
to train a model to predict affect [20]. Trained affect models
are then used in conjunction with action selection methods
for the synthesis, adaptation and affect-based expression of
agents including virtual humans [21] and social believable
agents [22].

Beyond the obvious uses of RL for learning a behavior
policy, RL has been used as a paradigm for creative AI
and, in particular, for the procedural generation of content
(PCG) [23]. While the experience-driven PCG framework [24]
considered the use of affect models beyond the behavior action
space, its initial version never considered RL as a training

paradigm for such generators. As a response, a recent study
blended the frameworks of experience-driven PCG and PCG
via reinforcement learning, namely ED(PCG)RL; EDRL in
short [25] focuses on the use of RL for the algorithmic creation
of content according to a surrogate model of player experience
or affect.

Whilst there exist a variety of studies on the topic of
agent emotion and reinforcement learning, literature on using
human-annotated emotion as a training signal for learning
is limited [26]. It has been shown that coupling an agent’s
simulated affect with its action-selection mechanism allows it
to find its goal faster and avoid premature convergence to local
optima [27]. Similarly, [28] showed that using affect as a form
of social referencing is a simple method for teaching a robot
tasks, such as obstacle avoidance and object reaching. Work
on intrinsic motivation through the RL paradigm [29], [30] is
also highly relevant to our aims. Intrinsic motivation studies by
definition, however, ignore human demonstrations, behavioral
and importantly affective [31]. A number of very recent studies
(e.g. [32]) view the intrinsic motivation paradigm from an
inverse RL lens through which reward functions are inferred
from behavioral demonstrations.

The work in this paper expands upon the current state of
the art by viewing affect modeling as an RL paradigm and
explicitly blending agent behavior and affect using a cutting
edge RL algorithm for hard exploration problems. The result
is a set of agents which are tested in games in this initial study.
The game agents trained to behave (i.e. play) optimally, even
better than humans, and “feel” like a human would (via arousal
imitation), or a blend of the two approaches with varying
degrees of importance.

III. BLENDING BEHAVIOUR AND AFFECT

This paper proposes combining rewards for good behavioral
performance with rewards for affect matching in a rein-
forcement learning agent. We leverage the Go-Explore RL
algorithm and describe our implementation in Section III-A
and how it is enriched with affect information in Sections
III-B and III-C.

A. Go-Explore Implementation

The Go-Explore algorithm builds on two phases to create
a robust search policy that performs well under a specified
reward scheme received from the environment. The first phase
is the exploration phase, where a deterministic model of the
environment is used to explore the search space thoroughly.
During exploration an archive of the states encountered so far
is used to ensure states are not forgotten, thus preventing the
issue of derailment. Each state in the archive also contains the
string of actions needed to return to it, addressing the issue of
detachment and ensuring that all states can be visited. States
are chosen using a selection strategy (e.g. randomly or through
the UCB formula [33]), after which the algorithm returns to
the state as described and begins exploring from there. At
its simplest, exploration occurs by taking random actions and
updating the cell archive with new states or updating existing



Fig. 1. A high-level overview of Go-Explore that blends agent behavior and
affect.

ones with better reward values. The move selection strategy
can be improved according to the nature of the environment
being searched and through the use of expert knowledge.

The result of the exploration phase is a number of high per-
forming trajectories using the deterministic model. If required,
the robustification phase uses the “backward algorithm” [34]
to train an agent to perform at the same level (or better)
as the trajectories found in exploration, but in a stochastic
setting. The backward algorithm is an RL technique used to
learn from a given trajectory by decomposing the problem
into smaller exploration tasks. It starts by placing the agent
near the end of the trajectory and uses an off-the-shelf RL
algorithm to train the agent to imitate its last segment. This is

repeated several times, moving the starting point further back
until the beginning of the trajectory is reached and the agent
has been trained on the entire trajectory. To stabilize learning,
Go-Explore extends this method to use multiple trajectories
which are uniformly sampled at the beginning of each learning
episode.

Our implementation of Go-Explore follows the original
approach by Ecoffet et al. [5] (see Fig. 1). An archive of
cells stores the game states that have been visited, with each
cell representing a unique game state and containing the
instructions needed to reach that point in the game. Each cell
has an associated reward value, which is used to determine if
the cell should be updated in case a similar state with a better
score is found. Cells are chosen to explore from randomly,
and the actions taken to build trajectories during exploration
are also random. Along with the action trajectory to return
to its state, each cell also contains trajectories for the state
with accompanying cumulative behavioral and affect rewards
per trajectory. This implementation of Go-Explore differs from
the original version through the inclusion of affect (i.e. arousal
in this study) in the reward function. Moreover, in this paper
the robustification phase of Go-Explore is not carried out but
will be explored in future work.

B. Arousal Model

A natural question arising when one is asked to blend
behavior and affect within a learning process is how the two
pieces of information will be considered and fused. An obvious
requirement is that the human annotations of affect are time-
continuous, thus providing moment-to-moment information
about the change of affective states and aligning them with
game states stored in playtraces.

One approach for calculating an affect reward would be to
build a priori models of affect using supervised learning and
use their predicted outcomes indirectly as affect-based reward
functions. Instead, one could use the affect labels directly
and build reward functions based on this information. Rather
than relying on a trained surrogate model of arousal in a
given state, our algorithm queries a dataset of human arousal
demonstrations to find the arousal value of the human player
closest to the current game state. We use the playtraces and
their associated arousal traces directly to assess the player’s
arousal value in that state which, in turn, provides the intended
arousal goal at this point in time.

C. Reward Function

The reward function used for this version of Go-Explore
consists of two weighted functions for optimizing behavior
and imitating human affect respectively. Both components are
normalized within the range [0, 1] to avoid uneven weighting
between the two objectives. In particular the reward function
used, Rλ, is as follows:

Rλ = λ ·Ra + (1− λ) ·Rb (1)

where Ra and Rb are the rewards associated with affect and
behavior, respectively, and λ is a weighting parameter that



blends the two rewards. Formally, the reward associated to
affect (i.e. arousal in this paper) is computed as follows:

Ra =
1

n

n∑
i=0

(1− |h(i)− a(i)|) (2)

where i is a playtrace and affect annotation observation within
a time-window; n is the number of observations made so
far in this trajectory; h(i) is the agent’s estimated arousal
value in its current game state; a(i) is the arousal goal at
this point in the game. In this paper, we derive h(i) and a(i)
directly from human playtraces and their accompanied affect
annotations (see Section III-B). Specifically we calculate a(i)
by first creating a mean arousal trace averaging all players’
arousal values in the same timestamp: this creates a moment-
to-moment arousal trace that captures the consensus of players
(regardless of actual game context). a(i) is then calculated by
finding the arousal value of this mean arousal trace for that
time window i. On the other hand, h(i) is based on the agent’s
current game state, finding the annotated arousal value of a
human playtrace at any timestamp which has an accompanying
game state closest to the agent’s game state.
Ra minimizes the absolute difference between the arousal

value of a human player in a similar game state as the agent,
and the mean annotated arousal value at this time window
i. Since this difference is averaged across the number of
observations made so far, it encourages trajectories with high
imitation accuracy across the whole arousal trace generated.

The reward for the agent’s behavior (Rb) depends on the
game; in this paper we assume that the total score accumulated
throughout the game is a sufficient reward for optimal behav-
ior. This assumes that the environment follows arcade game
tropes which are played for high-score, as is the case in our
case study described in Section IV. In more complex games,
or in games without an explicit score, the reward signal must
be designed on an ad-hoc basis such as the reward function
used in the original implementation of Go-Explore [5].

According to Eq. (1), if λ = 0 the reward function trains the
agent to only maximise its score (i.e. optimize its behavior)
and ignore its associated arousal trace. On the other hand, if
λ = 1 the agent is trained to imitate human arousal and ignore
its behavior.

IV. CASE STUDY: ENDLESS RUNNER

The proposed vision of blending arousal and performance
rewards is tested in the “Endless Runner” game (hereafter
Endless). Endless is a platformer game built using the Unity
Engine and featured in the AGAIN dataset [35]. The game
was chosen for its simple mechanics and objective, and for its
accompanying dataset of 112 annotated human play sessions
that can be easily used for the arousal model.

A. Game Description

In Endless, the player controls an avatar that constantly
moves towards the right and must avoid or destroy obstacles
that spawn in their path. The platform consists of two lanes
(top/bottom) and the player’s only controls is switching lanes

Fig. 2. Endless Runner Game Layout

by moving up or down (via keyboard input) and/or using a
melee attack described below. Game objects are placed on
one of two lanes (upper/lower) and are spawned at random
intervals. Game objects include items that the player may
collide with to improve their score (coins) or alter their
movement speed (potions). Other game objects are obstacles
(which include immobile enemies); the player must use their
melee attack when in close proximity to the obstacle in order
to clear it. Colliding with an obstacle results in a 10 point score
penalty, destroys any nearby game objects on the screen, and
resets the player’s speed to the default value. Every 3 seconds
the player is passively awarded a point to their game score
on top of any bonus points they may receive for collecting
coins. Every 10 seconds the speed of the player increases
by a fixed amount, increasing the difficulty of the game. In
theory, the game can be played for as long as the player wants.
During data collection for the AGAIN dataset, an Endless
session ended after exactly two minutes and the player has
infinite lives. We follow the same duration in all experiments
in this paper in order to leverage players’ affect annotations
and compare the agents’ performance with human play.

B. Go-Explore for Endless Runner

The game was converted into a deterministic environment to
be compatible with the exploration phase of Go-Explore. The
sequence of objects to be spawned and their spawn times was
fixed to ensure the same sequence of game states are observed
when replaying trajectories. Moreover, the game could start
from any saved snapshot (i.e. any visited game state). This
minimizes the time spent returning to a new cell’s state and
allows the algorithm to focus on exploration, an approach
central to the Go-Explore paradigm [5]. To decide which
cell the game state should be assigned to, the game state
is mapped as an 8-parameter vector describing the player’s
current lane (two binary values, one per lane), and which
game objects are on each lane at specific distance bands (near,
mid-distance, and far). The possible values for these bands



are empty, item, or obstacle, and in case items and obstacles
exist in the same band, it is treated as an obstacle band. The
reward for optimal behavior (Rb) in Endless is the player’s
total score after an action is taken. This value is normalized
between 0 and 1 with respect to the optimal score achievable
in the play session. The optimal in-game score is calculated
by summing two components. The first is the total amount
of points awarded to the player passively over time for not
dying during the game. The second is the maximum amount
of bonus points achievable by picking up every coin in the
deterministic environment.

C. Experimental Protocol

Reported results per method are averaged across five inde-
pendent runs of the Go-Explore algorithm. Each run consists
of the exploration phase of Go-Explore (there is no robusti-
fication phase in this first experiment), and the agent returns
and explores 4,000 times before selecting the best trajectory
and saving it. The agent explores a maximum of 20 actions
before choosing a new state to explore from. The actions taken
during exploration are chosen at random among the 6 possible
options (move up or down, move up or down and attack, no
action and attack). The new state to explore from is chosen
at random among those already discovered: the reward of the
state in the archive, or the number of times it has been visited is
not considered. The best trajectories are saved and can be used
for the robustification phase of Go-Explore in future work.

The λ parameter of Eq. 1 was varied to observe the
relationship between learning to play the game optimally and
learning to imitate human annotated arousal. Table I shows the
five values used for the λ parameter, ranging from 0 to 1 in
increments of 0.25. Recall that at λ = 0 and λ = 1 the agent
tries to learn to solely behave optimally or to solely “feel”
like a human respectively. As a baseline, an experiment with
an agent that performed random actions was carried out and
results are averaged from 5 independent runs. To estimate this
random agent’s arousal levels, a trace was generated based
on the game states visited using the same approach as in the
Go-Explore experiments.

The results were compared to the average performance seen
by humans in the dataset for both behavior and arousal reward
functions. All results given are the average observed across the
5 runs of Go-Explore, paired with the 95% confidence interval.

D. Results

Table I shows the final values observed for the cumulative
behavior (Rb) and arousal (Ra) components, as well as the
overall reward function (Rλ) for each experiment. Note that
the baseline agent and human entries are not included in the
Rλ column as they were not trained using Go-Explore. Figure
3c illustrates how the agents’ overall cumulative reward fluc-
tuates over time for each Go-Explore configuration. Note that
due to different λ values, the Rλ values across experiments
are not comparable but the differences in how it fluctuates
over time provides insight into the behavior of the algorithm.
It is clear that agents with higher priority assigned to arousal

TABLE I
RESULTS FOR ENDLESS AVERAGED FROM 5 RUNS AND INCLUDING THE

95% CONFIDENCE INTERVALS.

Experiment Performance Measures
Setup Rb Ra Rλ
R0.0 0.79 (±0.0474) 0.72 (±0.0126) 0.79 (±0.0474)
R0.25 0.73 (±0.0818) 0.73 (±0.0181) 0.73 (±0.0569)
R0.5 0.74 (±0.0741) 0.74 (±0.0145) 0.74 (±0.0311)
R0.75 0.69 (±0.0658) 0.76 (±0.0147) 0.74 (±0.0082)
R1.0 0.25 (±0.1335) 0.79 (±0.0056) 0.79 (±0.0056)

Random 0.03 (±0.1012) 0.75 (±0.0074) N/A
Human 0.70 (±0.0467) 0.77 (±0.0131) N/A

imitation tend to converge to their maximum value quicker due
to the nature of the arousal reward function. Since at R0.0 the
total reward amounts to a normalized measure of the agent’s
in-game score, it is not surprising that high scores are only
attainable at late points in the game. Instead, states that match
the mean arousal trace seem to be easily discovered even early
in the game.

Looking at the results for the behavioral component (i.e.
the total game score normalized to the absolute best possible
score), the random agent shows the worst performance as one
would expect when playing most games. While the exploration
phase of Go-Explore relies on a random sequence of actions,
the discovery of interim states (cells) to explore from and
the optimization of these states based on Rλ clearly leads
to a more efficient playstyle than random. For R1.0, the
agent still manages to produce a better score than the random
agent but remains significantly lower than the average human
player. Random and R1.0 also display a wider confidence
interval compared to the rest of the experiments, pointing to an
inconsistent behavior. When the behavior component is intro-
duced with a small weight (e.g. R0.75), the score immediately
matches that of the average human demonstration. As λ is
lowered to zero, the agent’s score improves and surpasses
human levels of performance. Figure 3a illustrates how the
agents’ cumulative behavior reward changes over time for each
configuration. As noted above, the cumulative behavior reward
is very time-dependent by design (players reach higher scores
the longer they play) but clearly the random agent (and R1.0

to a degree) tends to lose score by hitting obstacles which
seems to perfectly offset passive score gains.

The results for the arousal component tell a similar story
to the results for behavior, with the exception of the random
agent. Unsurprisingly, the arousal score increases as λ in-
creases from 0 to 1. What is surprising however is the arousal
scores attained by the random agent, which seem to be almost
at the same levels as the human trace and is only significantly
surpassed by R1.0. The potential reasons for this are discussed
in section V. Figure 3b illustrates how the agents’ cumulative
arousal reward changes over time for each configuration. It is
evident that unlike Rb which is tied to the game score, it is
easy to attain high values in Rb early on, and it is also easy
to maintain the same levels throughout the game even when
performing random actions.



(a) Cumulative Behavior Reward (Rb)

(b) Cumulative Arousal Reward (Ra)

(c) Cumulative Total Reward (Rλ)

Fig. 3. Cumulative rewards averaged from 5 independent runs. Shaded areas
denote the 95% confidence interval.

V. DISCUSSION

This paper envisions how affect modeling and expression
can be realised thought the RL paradigm. In particular, we
investigate how arousal traces can be used as human demon-
strations that train a gameplaying agent to learn how to feel
like a human. In the simple testbed of Endless Runner, the
large number of annotated playtraces allowed us to match an
agent’s game state to a human player’s game state and use
the player’s annotated arousal level directly. Results indicate
that, as expected, updating the cells of Go-Explore based on
the agent’s in-game performance (a normalized version of the
game score) leads to optimal behavior policies that surpass
the average human scores. Combining this performance-based
reward with an arousal-based reward that aimed to mimic
human annotations resulted in a minor drop of performance
which, nevertheless, remains human-competitive. Evidently,
using this arousal-based policy alone was detrimental to game-
play performance and points to some limitations of the current
way that Ra of Eq. 2 is calculated.

The fact that for all agents, including the random action
baseline, the cumulative arousal reward swiftly reached high
values points to a task that is overly easy. It seems that deriving
a policy only based on Ra does not motivate the agent to
explore many different states, although the number of updates
or new cells encountered in Go-Explore has not been studied
sufficiently to verify this hypothesis. Moreover, it should be
noted that the human annotations of arousal were processed
in an unbounded, ordinal fashion and normalized after the
fact. While most players follow a similar pattern of increasing
arousal as the game goes on, using the numerical difference
between one human’s arousal value (closest to the agent’s
game state) and the mean could reintroduce subjectivity biases
due to the normalization applied. Designing another reward
function for arousal that better matches the ordinal nature
of affect [36], [37] would be an important direction for
future work. Finally, both performance and affect rewards
are measured cumulatively, in part due to the fact that the
former is the player’s score. Exploring different variants by
e.g. averaging either score increase or arousal similarity across
a narrower time window is expected to have an effect on
agents’ performance.

It is also worth noting that the Endless Runner testbed
has a low branching factor and a deterministic game state.
Therefore each experiment was subjected to a very similar
sequence of game states. While the simple game still showed
that performance-based optimization via Go-Explore is vastly
superior to a random agent, it may have affected the arousal
model in unexpected ways. Due to the few visited game states,
it is likely that the range of values that could be returned by the
arousal model was small, which is a likely cause for the agents’
similar arousal accuracy and small confidence intervals across
the board. Furthermore, when identifying the closest human
for the arousal model, a relatively small subset of sessions
are used for computational efficiency which further limits the
range of arousal values that could be observed. Changing the



approach for deriving an arousal value for a given state with
this limitation in mind would help generate more diverse traces
and allow the differences in the reward functions to become
more pronounced. A more complex game where the agent has
more degrees of freedom and more arousing stimuli for the
human playtesters will also likely illuminate the strengths and
weaknesses of this approach.

This proof of concept opens up several avenues for future
work to further explore the relationship between behavior and
affect in the context of reinforcement learning. Obvious next
steps have been highlighted above in terms of refining the
arousal reward function and testing the approach in more
complex, more stimulating games. Another direction is testing
machine-learned predictors of affective states rather than the
direct mapping to the closest human trace performed currently.
While surrogate models are often inexact, it may counteract
the sparse game states encountered by human players when
matching an unseen state. More importantly, incorporating
the robustification phase in the Go-Explore algorithm is ex-
pected to lead to new insights on the impact of affect-based
rewards, especially since the environment will no longer be
deterministic and thus many more game states are likely to be
visited. Finally, imitating human behavior (as a form of reward
function) can reveal interesting new relationships between the
human-like behavior and affect and optimal play; such derived
policies would likely allow agents to play (near) optimally,
whilst attempting to imitate both human behavior and human
affect.

VI. CONCLUSION

This paper presents a proof of concept implementation of a
new reinforcement learning paradigm for affective computing
where behavioral and affective goals are interwoven. We
leverage the Go-Explore algorithm due to its cutting edge
ability to solve hard exploration problems, and we pair it
with a set of reward functions that blend optimal behavior
with arousal imitation to different degrees. Using the Endless
Runner game as a platform to test the implementation, we
were able to make use of an extensive dataset of human
play sessions and accompanying arousal demonstrations that
guided the agent’s policy. While this initial study focused on
a single, simple game, the next steps of our investigations
include the enhancement of the Go-Explore approach to cater
for its robustification phase, the introduction of ordinal reward
functions, and the extension of the approach to accommodate
more complex environments within and beyond games.
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