
Designer Modeling for Personalized Game Content Creation Tools

Antonios Liapis1, Georgios N. Yannakakis1,2, Julian Togelius1
1: Center for Computer Games Research, IT University of Copenhagen, Copenhagen, Denmark

2: Institute of Digital Games, University of Malta, Msida, Malta
Mail: anli@itu.dk, georgios.yannakakis@um.edu.mt, julian@togelius.com

Abstract

With the growing use of automated content creation
and computer-aided design tools in game development,
there is potential for enhancing the design process
through personalized interactions between the software
and the game developer. This paper proposes designer
modeling for capturing the designer’s preferences, goals
and processes from their interaction with a computer-
aided design tool, and suggests methods and domains
within game development where such a model can be
applied. We describe how designer modeling could be
integrated with current work on automated and mixed-
initiative content creation, and envision future direc-
tions which focus on personalizing the processes to a
designer’s particular wishes.

Introduction
A game’s aesthetic quality can be determined by several fac-
tors, including its art style, the pacing of its interactions, the
emotions evoked by in-game or pre-scripted events, or the
departures from typical games of its genre. All of these el-
ements can be traced back to creative members of the de-
sign and art team: game designers, level designers, visual
and sound artists or writers. The design process of these cre-
ators differs depending on the type of creative task, the struc-
ture of the design team and ultimately on the preferences
and vision of each individual. However, a unifying trait in
modern game development is the almost ubiquitous use of
sophisticated computer-aided design tools. From game edi-
tors such as Unreal Development Kit (Epic Games 2009) to
graphic design tools such as Photoshop (Adobe 1990) and
from brainstorming tools such as Mindjet (Mindjet 2012)
to procedural generators such as SpeedTree (IDV 2002),
computer-aided design tools are used in almost all creative
tasks in order to minimize development time and cost, re-
duce human effort, support collaboration among members
of a design team or elicit a user’s creativity.

Current tools for game development, however, do not af-
ford personalized interaction. It stands to reason that creative
tools used during game development would benefit from be-
ing able to identify the designer’s intentions, preferences,
design patterns and affective reactions and accommodate

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

them in the artifacts they generate. Using a computer-aided
design tool that is knowledgeable of its user or users can re-
duce designer effort and speed up content creation; more-
over, it can make suggestions which are counter-intuitive
to the designer’s thought process in order to spur the de-
signer’s creativity via lateral thinking (De Bono 1970). This
paper introduces the term designer modeling as the mech-
anism which identifies the style, preference, intentions and
affective states of designers and artists in a similar fashion
that player modeling attempts to identify behavioral, cog-
nitive and affective patterns of a player (Yannakakis et al.
2013). Designer modeling adopts key principles from user
modeling (Benyon and Murray 1993) and applies them di-
rectly to the interaction between a designer and an authoring
tool during the creative process. While user modeling tradi-
tionally models the end-user interaction in order to inform a
designer, there are a lot of potential synergies between the
two fields; for instance the Goals, Operators, Methods and
Selection rules model from user modeling (John and Kieras
1993) is very similar to the modeling of designer goals, pref-
erence and process suggested in this paper. One interesting
difference between these endeavors is that while user model-
ing is mainly intended to enhance the efficiency of a process,
designer modeling is also intended to augment the creativ-
ity of designers, and thus qualitatively increase the results of
their work.

In this paper we draw the connections and the distinc-
tions between designer modeling and player modeling and
suggest different methods of performing designer modeling.
The paper also envisions game development tasks where de-
signer modeling can be applied. Finally, we propose how a
designer model can also be used to enhance creativity and
reduce designer fixation.

What Designer Modeling Is and Is Not
A reliable designer model can be used to enhance the cre-
ative processes via a computer-aided design (CAD) tool. Ex-
isting CAD tools for games (Smith, Whitehead, and Mateas
2011; Smelik et al. 2011) support co-creation at large, but
do not discern the preferences, emotions or goals of their
user as a human collaborator would (Lubart 2005). We view
the designer model as an important computational element
between human and computational creation (see Fig. 1). In-
formation collected during the human design process is fed



Designer Model

input

feedback

inform adapt

Designer CAD Tool

Figure 1: The designer model incorporated in a computer-
aided design (CAD) process.

to the designer model, which adapts online as the interac-
tion takes place or offline based on past interaction data. The
model, in turn, provides a set of heuristics that drive the gen-
erative process or the search of the computational creator.

Designer modeling is related and analogous to player
modeling, but there are some important distinctions. Player
modeling is the study of computational means for captur-
ing behavioral, cognitive and affective patterns of players
(Yannakakis et al. 2013); player models, in turn, are either
directly used to influence the game (Hunicke 2005) or in-
form designers about a player’s properties and experiences
(Yannakakis and Togelius 2011). Designer modeling is a far
more complex and challenging task as it can be viewed as a
second-order player modeling process; that is, a successful
designer model incorporates the intentions of the designer to
satisfy the player. In a sense, a designer model evaluates the
designer’s evaluation of player experience and playstyle.

However, a designer is not solely concerned about the
challenge of the game or the pacing of its interactions. Other
typical concerns include the presence of a unified style (or
theme) within the visual, aural and gameplay elements of
the game, or an intended ‘message’, emotional response
or learning outcome of the game, especially in purposeful
games such as those intended for education. Creating models
of such designer concerns is very different from player mod-
eling, but falls under general machine learning. As a more
mature academic domain, machine learning can provide sig-
nificant insight on how to actualize designer modeling for
the purposes of game development; in the next section, con-
nections are drawn between the computational challenges of
modeling preferences, goals and process and larger machine
learning problems. It can be argued that successfully model-
ing all relevant aspects of a designer’s intent, style and capa-
bility would be so complex as to be AI-complete; however,
this is an empirical question and even achieving more lim-
ited versions of designer modeling could prove very useful.

What Can Be Modeled
As the interaction between a designer, the CAD software and
the designed object is multi-faceted, there are many aspects
of the process that could be modeled — often at different
levels. In the following paragraphs we analyze which aspects
could be modeled in a meaningful way.

Modeling Preferences
As any human user, so do designers have their own pref-
erences on the types of content they wish to create. Such
preferences may be personal, such as visual taste or favored
playstyle, or they can depend on the game’s setting, story-
line or intended player experience: one game may require a
frantic pace, while another may require vibrant visuals. Even
within the same game, designer preference could pertain to
the design patterns of a specific level, to the appearance of an
alien race, or to the challenge level of a specific puzzle. A de-
signer model could identify all of these preferences, regard-
less of how specific they are; once such preferences are iden-
tified, new content which aligns to these preferences can be
generated. How such a design model is constructed depends
on whether preferences are pertinent to the task at hand or a
matter of personal taste; in the former case the model can be
trained online, adapting solely to the user’s current interac-
tions, while in the latter case the model can be trained offline
based on a large body of past interactions. This aspect of de-
signer modeling shares the same computational challenges
as preference learning (Fürnkranz and Hüllermeier 2010).
Beyond machine learning, modeling designer preferences
for CAD tools also needs to address challenges pertaining
to human-computer interaction, since intrusive tools which
use learned preferences in a way that limits a user’s creative
control can have adverse effects (Liapis, Yannakakis, and
Togelius 2012a).

Modeling Style
Many designers have a particular style which can be easily
identified across different levels of the same game or even
across different games. Telltale signs include visual details
such as rounded edges or particular color schemes as well
as more abstract features such the presence or absence of
open spaces, rhythm and pace, player choice, explicit or im-
plicit reward mechanisms etc. As an example, consider the
classic level designs of Shigeru Miyamoto in several early
Nintendo games such as Super Mario Bros (Nintendo 1985)
and The Legend of Zelda (Nintendo 1986), where the de-
signer’s preference for hidden features and quirky passages
that reward replay and exploration can be seen across dis-
similar games. Such designer style can be modeled as a form
of preference in the sense that, when a design problem oc-
curs, the designer’s style is implemented as their preference
for one among several possible solutions to that problem;
faced with the problem of how a player can progress through
a door, Miyamoto might prefer hiding a key behind a crack
in the wall whereas another designer might prefer putting a
strong enemy in front of the door. Since style is ultimately
a form of preference, the same computational challenges of
modeling designer preferences apply; however, since style is
more pervasive across games or genres, larger datasets may
be necessary to discern styles, moving the modeling of a de-
signer’s style closer to the larger problems of data mining,
clustering and pattern recognition.

Modeling Goals and Intentions
A CAD tool is expected to help the designer achieve their
goals. While goal recognition via machine learning has been



identified early on (Goodman and Litman 1992) as a sig-
nificant enhancement to user/system interactions, there has
been limited interest in incorporating it in tools for game de-
velopment. A prediction of a designer’s current goals can be
made from past interactions; assuming that the designer has
a consistent style, the system can predict the designer’s next
steps by matching the user’s current creative step with pre-
viously seen interactions. The end result of such previous
interactions can be shown, as advice, in order to speed up
the creative process. Alternatively, the system can suggest
likely next steps based on a probabilistic model of cognitive
associations (Wang 2008), which is trained on past design
sessions. There are however several challenges in the pre-
diction of goals: for instance, the system is likely to present
no new content, as it uses past artifacts more or less directly.
This is as likely to stifle creativity and enhance designer fixa-
tion as it is to speed up the creative process. Additionally, the
goals of the designer are rarely known in advance, even to
themselves; it is therefore difficult to evaluate if the tool suc-
ceeds in predicting or helping achieve the designer’s goals.

Modeling Process
Different designers follow different design processes: some
level designers start with a rough sketch of the map layout,
others start from identifying the intended challenge level
while yet others have fleshed out specific portions of the
level (i.e. a chokepoint, a sniper location or a secret pas-
sage) before worrying about the big picture. A challenging
goal of designer modeling, therefore, would be to identify
such different processes and integrate them into their sup-
port mechanisms. Following the level designer example, a
design tool could alternate between generating suggestions
which increase the ‘resolution’ of a rough sketch (Liapis,
Yannakakis, and Togelius 2013d), suggestions which main-
tain the intended challenge level, and suggestions which add
details only to the portions of the level which are not fully
fleshed out yet. The design process of the human and the
computational designer can be even more closely matched,
such as for instance identifying if the level designer is cur-
rently placing resources or obstacles. Modeling a designer’s
process can be viewed as a short-term plan recognition prob-
lem (Kautz 1987), and thus actions such as resource place-
ment can be clustered together for the purposes of activity
recognition (van Kasteren, Englebienne, and Kröse 2011).

Modeling Affective States
As emotion plays a critical role in human decision making
(Damásio 1994), it is central to the drive of creativity. Ar-
guably, a designer’s emotion is far more complex to identify
and measure when compared to modeling behavioral pat-
terns of interaction. However, research in affective comput-
ing (Picard 1997) has shown the potential of reliably model-
ing user affect via emotional manifestations. We argue that
similar to modeling player’s affect during gameplay interac-
tion through head motion (Asteriadis et al. 2012) or phys-
iology (Martı́nez, Garbarino, and Yannakakis 2011), affec-
tive computing methods can be applied to detect designer
frustration or surprise which are critical during creative pro-
cesses. Conceivably, using a designer model that predicts

which content will surprise a designer, a computational cre-
ator could generate and present surprising suggestions in or-
der to break designer fixation.

Individual versus Collective Designer Modeling
As in player modeling, there is the potential to model both
individual designers and groups of designers such as the
members of a game studio. A designer modeling tool that
captures the preferences, goals and processes of a large com-
munity of designers would be useful, as it could learn much
more from the abundance of interaction data than it could
learn from a single designer. Having a good initial model
would also be beneficial to novice designers, who might
need more help in the design process. Modeling individual
designers on the other hand allows for personalization, espe-
cially considering that designers often have highly divergent
styles and ways of working, as noted above. Conceivably,
an effective designer model would include both collective
and individual models, with the former describing a base-
line and the latter deviations from that baseline. Classical
supervised learning algorithms would likely be useful for
collective models based on large amounts of data whereas
instance- or case-based models could be used for individual
designer modeling.

Modeling within Game Development
In a typical game company, developers with creative tasks
include game designers, level designers, content creators
(visual and sound artists) and in many cases story writers.
In this section we propose methods for accommodating each
of these designer types via creativity-enhancing tools which
adapt to fit their users.

It should be noted that the proposed methods of designer
modeling do not solely depend on the type of creator, but
also on the size and hierarchical structure of the develop-
ment team. For instance, an indie developer working alone to
design, program and create assets can benefit from a highly
personalized model while a large team of artists may require
a collective model of visual preferences. Even so, such large
teams of artists often have an art director who strives for a
unified art style; a designer model can therefore be person-
alized to the director and disseminated to the artists in order
to notify them of deviations from the art director’s vision.
In looser hierarchical structures, a group of game designers
may use a collective designer model in a collaborative en-
vironment, interweaving the preferences of other designers
with their own and drawing inspiration from the design pro-
cesses modeled after other members of the team.

Game designers
The core contribution of a game designer is shaping the over-
all gameplay experience by defining the game’s rules and
mechanics. Game designers are often concerned about game
balance, as well as maintaining a challenging and engaging
experience throughout the entire game.

Togelius and Schmidhuber (2008) created movement and
collision rules for abstract video games, evaluating them on
how easily artificial controllers could learn to play them,



while Cook et al. (2013) altered and combined video game
rulesets targeting a longer sequence of actions for solving
a level (using a breadth-first search controller). As such
methods use an artificial controller to play the game, de-
signer modeling can be realized by adapting the artificial
controller to match the designer’s intended playstyle. As-
suming a simulation-based evaluation of game quality (To-
gelius et al. 2011), training the artificial controller to match
designer-sanctioned gameplay patterns will indirectly affect
the evaluation score of such games, and thus types of games
are favored. As an example, Togelius, De Nardi, and Lucas
(2007) trained artificial neural networks to drive like individ-
ual human players, which were used to evaluate new racing
tracks personalized to those human players; this could be
considered designer modeling if the player is considered the
track designer.

Browne and Maire (2010) evolved board game layouts
and rules and evaluated them on 57 criteria aggregated into
a weighted sum; the impact of each criterion to ‘human in-
terest’ was determined through a user survey with 57 partic-
ipants. That study tried to accommodate all 57 participants,
and thus could be considered collective designer modeling;
the same method could also be applied to personalize the
impact of such criteria to a single game designer. The user
study of Browne and Maire required each participant to play
a pair of games and identify the most interesting one; choice-
based interactive evolution (Liapis et al. 2013) could simi-
larly be used to adapt the impact of these criteria based on
the designer’s preference, and evolve a new pair of games al-
lowing the designer to continuously adapt and refine both the
game rules and the model of quality which evaluates them.

Level designers
Level designers create the gameworld where the game takes
place; in most cases such a gameworld is separated into lev-
els played in succession, although open-ended games usu-
ally consist of a single massive and highly-detailed world.
Procedurally generated levels have seen extensive use in
the game industry, but their quality is rarely evaluated. Re-
searchers have proposed evaluation functions based on e.g.
on the rhythm of platformer levels (Smith, Whitehead, and
Mateas 2011), the fairness of strategy game levels (Liapis,
Yannakakis, and Togelius 2013c), the speed variance of rac-
ing tracks (Togelius, De Nardi, and Lucas 2007) or the al-
lowed solutions of puzzle games (Smith, Butler, and Popović
2013); the impact of such engineered measures can be ad-
justed to designer preferences.

As an example of how designer modeling could be imple-
mented, we envision a future version of the Sentient Sketch-
book level design tool which integrates a designer model.
In Sentient Sketchbook (Liapis, Yannakakis, and Togelius
2013b), the tool constantly measures the qualities of the cur-
rent state of the level design through several metrics related
to exploration, area control and balance (Liapis, Yannakakis,
and Togelius 2013e), and provides real-time feedback to the
designer as well as suggestions for changes that the designer
can choose to apply or ignore. One way of modeling de-
signer preferences could be implemented by learning pre-
ferred weightings on the various quality metrics based on

the comparison of accepted suggestions with suggestions
that were ignored during the design process. This could
be represented as a linear or non-linear function, such as
a weighted sum or a multilayer perceptron respectively. A
baseline model of level quality could be learned from the
entire community of users of this tool, which could be used
to help discern and quickly adapt to individual deviations.
Individual or collective designer process could be modeled
by recording sequences of actions and storing them in a case
base. These could then be accessed by a nearest-neighbor
retrieval procedure so that when a designer starts a new map
sketch, the first steps are matched to the corpus of existing
design sequences.

Visual artists
Visual artists include several different professions such as
concept artists, 3D modelers, animators and art directors.
Such artists mostly use computer-aided design tools such
as Photoshop (Adobe 1990) or 3D Studio Max (Autodesk
1996); however, automated generators such as FaceGen
(Singular Inversions 2001) and SpeedTree (IDV 2002) are
also used as shortcuts for visual asset creation within the
game industry. Evolutionary algorithms have been used to
create both 2D art and 3D art, where a visual artist can ex-
plicitly select which visual patterns they wish to favor (Wan-
narumon 2010) or by selecting which artifacts should be
allowed to evolve (Secretan et al. 2011). While such ‘di-
rect’ designer modeling can result in highly customizable
artifacts, a less intrusive method for modeling the artists’
preferences is also possible. By adjusting the prevalence of
specific visual patterns according to the appearance of the
artist’s preferred artifacts, the generator can create new ar-
tifacts which accommodate the artist’s style. This adaptive
model of visual taste has been demonstrated in the domain
of 2D spaceship design (Liapis, Yannakakis, and Togelius
2011; 2012b).

Sound artists
While often overlooked, sound is an important element of
games and can greatly affect the player’s experience; sound
artists create the background music and sound effects of the
game. There has been limited research interest in the cre-
ation of music and sound effects for games, although musi-
cal metacreation has seen several important developments in
the last years, including the creation of a workshop1. Sim-
ilar to the visual arts, artificially evolved music is driven
directly by human selections (Hoover, Szerlip, and Stan-
ley 2011) or by objective functions (Eigenfeldt and Pasquier
2013); a model which adapts these objective functions (Li-
apis et al. 2013) could be applied to personalize the gener-
ated music to the designer’s wishes. A more direct form of
designer modeling could be used to learn from a corpus of
designer-authored (or designer-favored) sound pieces; new
sound pieces could be created from such a corpus via prob-
abilistic models such as Hidden Markov Models (Pardo and
Birmingham 2005).

11st International Workshop on Musical Metacreation (2012) at
http://www.metacreation.net/mume2012



Writers
The term ‘writer’ in this paper is used loosely to include the
story writers which flesh out the main story arc as well as
writers of quests and NPC dialogue. Not all games require
writers if they favor short interactions (e.g. casual or sand-
box games); however, as many AAA games rely on an en-
grossing plot, narrative generation has potential applications
in game development as demonstrated by the game-like in-
teractive drama prototype Façade (Mateas and Stern 2005).
Events or complete stories for games can be authored via
mixed-initiative tools for story generation (Skorupski et al.
2007; Thomas and Young 2006); designer modeling can be
accommodated directly by allowing human authors to create
a corpus of “agent types, mediation strategies and narrative
macros” (Thomas and Young 2006). Machine learning ap-
plied to this corpus of past stories or elements of stories can
be used to identify popular tropes and predict the writer’s
goals. Another possibility is to use computational models of
coherence, novelty and interestingness (Pérez y Pérez and
Ortiz 2013) or plot point flow (Weyhrauch 1997) to evolve
story elements as implemented by Giannatos et al. (2011);
these models can be adapted via designer modeling based
on the preferences or general style of the writer.

Breaking the model
While the primary purpose of designer modeling — as pre-
sented in this paper — is to accommodate the computer-
generated artifacts to the designer’s preferences, goals and
processes, a personalized model can also be used to ‘break’
the designer’s common practices. Designer fixation on spe-
cific gameplay properties in level design, specific visual pat-
terns in 2D art or specific tropes in writing can lead to ba-
nality in the artifacts created; a CAD software which accom-
modates such fixations would do little to inspire creativity.
However, as the designer model identifies those exact fix-
ations, it can purposefully create artifacts that break them.
Showing unexpected suggestions which the designer was
unlikely to come to by following their current preferences,
goals and process is likely to inspire the designer by show-
ing them how to ‘think outside the box’ (Kuhn 1962). Diver-
gent search algorithms, such as novelty search (Lehman and
Stanley 2011), can be used to break designer fixations by
adapting the characterization of divergence to the designer’s
preferences.

It should be noted that breaking the model in a way that
designers would not dismiss as ‘random’ or ‘wrong’ is a
challenging problem. Following the requirements that cre-
ative processes should result in artifacts that are both novel
and useful (Boden 1990), this problem can be somewhat mit-
igated by creating surprising suggestions which however ful-
fill some minimal criteria of usefulness, such as levels which
are playable. Constrained novelty search algorithms (Liapis,
Yannakakis, and Togelius 2013a) could be used to ensure
novel content which remains useful.

Conclusion
Designer modeling has the potential of greatly enhancing
the creative process of game developers, by accommodat-

ing a designer’s intentions for game difficulty, by adapting
a visual asset generator to an artist’s preferred style or by
creating surprising plot developments for a writer. The task
of designer modeling is challenging due to the fact that it
needs to accommodate a designer seeking to accommodate,
in turn, a player, but also due to the fact that a designer’s
task has unclear and immeasurable goals. While only the
very first steps towards actual implementation of these con-
cepts have been taken, we expect that the increasing interest
of game companies (and game AI researchers) in intelligent
tools for game development will lead to the exploration of
several of the concepts presented in this paper.

Acknowledgments
This research was supported, in part, by the FP7 ICT project
SIREN (project no: 258453) and by the FP7 ICT project
C2Learn (project no: 318480).

References
Asteriadis, S.; Karpouzis, K.; Shaker, N.; and Yannakakis, G. N.
2012. Towards detecting clusters of players using visual and game-
play behavioral cues. In Proceedings of the International Confer-
ence on Games and Virtual Worlds for Serious Applications, 140–
147.

Benyon, D., and Murray, D. 1993. Applying user modeling to
human computer interaction design. Artificial Intelligence Review
7(3-4):199–225.

Boden, M. 1990. The Creative Mind. Abacus.

Browne, C., and Maire, F. 2010. Evolutionary game design.
IEEE Transactions on Computational Intelligence and AI in Games
2(1):1–16.

Cook, M.; Colton, S.; Raad, A.; and Gow, J. 2013. Mechanic
miner: reflection-driven game mechanic discovery and level de-
sign. In Proceedings of Applications of Evolutionary Computation,
volume 7835, LNCS, 284–293. Springer.

Damásio, A. 1994. Descartes’ Error: Emotion, Reason, and the
Human Brain. Putnam Publishing.

De Bono, E. 1970. Lateral thinking: creativity step by step. Harper
& Row.

Eigenfeldt, A., and Pasquier, P. 2013. Evolving structures in elec-
tronic dance music. In Proceedings of Genetic and Evolutionary
Computation Conference.

Fürnkranz, J., and Hüllermeier, E. 2010. Preference Learning.
Springer-Verlag New York, Inc.

Giannatos, S.; Nelson, M. J.; Cheong, Y.-G.; and Yannakakis, G. N.
2011. Suggesting new plot elements for an interactive story. In
Proceedings of the AIIDE workshop on Interactive Narrative Tech-
nologies.

Goodman, B. A., and Litman, D. J. 1992. On the interaction be-
tween plan recognition and intelligent interfaces. User Modeling
and User-Adapted Interaction 2:83–115.

Hoover, A. K.; Szerlip, P. A.; and Stanley, K. O. 2011. Interactively
evolving harmonies through functional scaffolding. In Proceedings
of Genetic and Evolutionary Computation Conference.

Hunicke, R. 2005. The case for dynamic difficulty adjustment in
games. In Advances in Computer Entertainment Technology, 429–
433.



John, B. E., and Kieras, D. E. 1993. The GOMS family of user in-
terface analysis techniques: Comparison and contrast. ACM Trans-
actions on Computer-Human Interaction 3(4):320–351.
Kautz, H. A. 1987. A formal theory of plan recognition. Ph.D.
Dissertation, Bell Laboratories.
Kuhn, T. S. 1962. The Structure of Scientific Revolutions. Univer-
sity of Chicago Press.
Lehman, J., and Stanley, K. O. 2011. Abandoning objectives: Evo-
lution through the search for novelty alone. Evolutionary Compu-
tation 19(2):189–223.
Liapis, A.; Martı́nez, H. P.; Togelius, J.; and Yannakakis, G. N.
2013. Adaptive game level creation through rank-based interactive
evolution. In Proceedings of the IEEE Conference on Computa-
tional Intelligence and Games (CIG).
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2011. Optimizing
visual properties of game content through neuroevolution. In Pro-
ceedings of the AAAI Artificial Intelligence for Interactive Digital
Entertainment Conference.
Liapis, A.; Yannakakis, G.; and Togelius, J. 2012a. Limitations of
choice-based interactive evolution for game level design. In Pro-
ceedings of the AIIDE Workshop on Human Computation in Digital
Entertainment.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2012b. Adapt-
ing models of visual aesthetics for personalized content creation.
IEEE Transactions on Computational Intelligence and AI in Games
4(3):213–228.
Liapis, A.; Yannakakis, G.; and Togelius, J. 2013a. Enhancements
to constrained novelty search: Two-population novelty search for
generating game content. In Proceedings of the Genetic and Evo-
lutionary Computation Conference.
Liapis, A.; Yannakakis, G.; and Togelius, J. 2013b. Sentient sketch-
book: Computer-aided game level authoring. In Proceedings of the
ACM Conference on Foundations of Digital Games.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013c. Generat-
ing map sketches for strategy games. In Proceedings of Applica-
tions of Evolutionary Computation, volume 7835, LNCS, 264–273.
Springer.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013d. Sentient
world: Human-based procedural cartography. In Proceedings of
Evolutionary and Biologically Inspired Music, Sound, Art and De-
sign (EvoMusArt), volume 7834, LNCS, 180–191. Springer.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013e. Towards a
generic method of evaluating game levels. In Proceedings of the
AAAI Artificial Intelligence for Interactive Digital Entertainment
Conference.
Lubart, T. 2005. How can computers be partners in the creative
process: classification and commentary on the special issue. Inter-
national Journal of Human-Computer Studies 63(4-5):365–369.
Martı́nez, H. P.; Garbarino, M.; and Yannakakis, G. N. 2011.
Generic physiological features as predictors of player experience.
In Proceedings of the 4th International Conference on Affective
Computing and Intelligent Interaction, 267–276.
Mateas, M., and Stern, A. 2005. Procedural authorship: A case-
study of the interactive drama façade. In Digital Arts and Culture.
Pardo, B., and Birmingham, W. P. 2005. Modeling form for on-line
following of musical performances. In Proceedings of the AAAI.
AAAI Press.
Pérez y Pérez, R., and Ortiz, O. 2013. A model for evaluating in-
terestingness in a computer-generated plot. In International Con-
ference on Computational Creativity.

Picard, R. W. 1997. Affective computing. MIT Press.
Secretan, J.; Beato, N.; D’Ambrosio, D. B.; Rodriguez, A.; Camp-
bell, A.; Folsom-Kovarik, J. T.; and Stanley, K. O. 2011.
Picbreeder: A case study in collaborative evolutionary exploration
of design space. Evolutionary Computation 19(3):373–403.
Skorupski, J.; Jayapalan, L.; Marquez, S.; and Mateas, M. 2007.
Wide ruled: A friendly interface to author-goal based story genera-
tion. In International Conference on Virtual Storytelling, 26–37.
Smelik, R. M.; Tutenel, T.; de Kraker, K. J.; and Bidarra, R. 2011.
A declarative approach to procedural modeling of virtual worlds.
Computers & Graphics 35(2):352–363.
Smith, A. M.; Butler, E.; and Popović, Z. 2013. Quantifying over
play: Constraining undesirable solutions in puzzle design. In Pro-
ceedings of ACM Conference on Foundations of Digital Games.
Smith, G.; Whitehead, J.; and Mateas, M. 2011. Tanagra: Reactive
planning and constraint solving for mixed-initiative level design.
IEEE Transactions on Computational Intelligence and AI in Games
(99).
Thomas, J. M., and Young, R. M. 2006. Author in the loop: Us-
ing mixed-initiative planning to improve interactive narrative. In
ICAPS Workshop on AI Planning for Computer Games and Syn-
thetic Characters.
Togelius, J., and Schmidhuber, J. 2008. An experiment in auto-
matic game design. In IEEE Symposium on Computational Intelli-
gence and Games.
Togelius, J.; Yannakakis, G.; Stanley, K.; and Browne, C. 2011.
Search-based procedural content generation: A taxonomy and sur-
vey. IEEE Transactions on Computational Intelligence and AI in
Games (99).
Togelius, J.; De Nardi, R.; and Lucas, S. 2007. Towards automatic
personalised content creation for racing games. In Proceedings of
IEEE Symposium on Computational Intelligence and Games, 252–
259. IEEE.
van Kasteren, T. L. M.; Englebienne, G.; and Kröse, B. J. A. 2011.
Hierarchical activity recognition using automatically clustered ac-
tions. In Proceedings of the Second international conference on
Ambient Intelligence, 82–91. Springer-Verlag.
Wang, H.-C. 2008. Modeling idea generation sequences using Hid-
den Markov Models. In Proceedings of the 30th Annual Meeting
of the Cognitive Science Society.
Wannarumon, S. 2010. An aesthetics driven approach to jewelry
design. Computer-Aided Design and Applications 7(4):489–503.
Weyhrauch, P. 1997. Guiding Interactive Drama. Ph.D. Disserta-
tion, School of Computer Science, Carnegie Mellon University.
Yannakakis, G. N., and Togelius, J. 2011. Experience-driven pro-
cedural content generation. IEEE Transactions on Affective Com-
puting 99.
Yannakakis, G. N.; Spronck, P.; Loiacono, D.; and Andre, E. 2013.
Player modeling. Dagstuhl Seminar on Game Artificial and Com-
putational Intelligence.


